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• The meteorology-driven PM2.5 (O3)
trends were−0.5 ~−2.0 (+0.7 ~ +0.8)
μg m−3 yr−1.

• The decreased relative humidity ex-
plained 55% of meteorology-driven
PM2.5 trend.

• The increased boundary layer height ex-
plained 42% of meteorology-driven O3

trend.
• The meteorology contributed 10– 26% of
the decreasing trends in PM2.5-related
deaths.

• The meteorology contributed 15– 31% of
the increasing trends in O3-related
deaths.
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Stringent clean air actions have been implemented to improve air quality in China since 2013. In addition to an-
thropogenic emission abatements, the changes in air quality may be modulated also by meteorology. In this
study, we developed multiple linear regression models to quantify meteorological influences on the trends in
fine particulate matter (PM2.5) and ozone (O3) concentrations and associated health burden over three polluted
regions of China, i.e., North China Plain, Yangtze River Delta, and Fen-wei Plain during 2014–2018, with a novel
focus on the contributions of themost influentialmeteorological factors to PM2.5 and O3 trends aswell as theme-
teorological contributions to PM2.5- and O3-related mortality trends. The meteorology-driven PM2.5 (O3) trends
for the three regions were −0.5~−2.0 (+0.7~+0.8) μg m−3 yr−1, contributing 10– 26% (12– 18%) of the ob-
served five-year decreasing PM2.5 (increasing O3) trends. The decreased relative humidity (increased daytime
planetary boundary layer height) was identified to be the most influential meteorological factor and explained
55% (42%) of the largest meteorology-driven PM2.5 (O3) trend among all regions and seasons. The
meteorology-driven decreases in PM2.5 (increases in O3) concentrations led to overall decreases in PM2.5-
related (increases in O3-related) mortalities with trends of −2.2~−7.4 (+0.5~+0.9) thousand yr−1 for the
three regions, accounting for 10– 26% (15– 31%) of the total decreasing (increasing) trends in PM2.5-related
(O3-related) mortalities. The results emphasize the important role of meteorology in PM2.5 and O3 air quality
and associated health burden over China, and have important implications for China's air quality planning. In par-
ticular, more efforts in emission control should be taken to offset the adverse effects on ozone caused by
meteorology.
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1. Introduction

Air pollution has become a serious environmental problem during
recent years in China, and has aroused unprecedented public concerns.
Epidemiologists have confirmed associations between air pollutants
and health burden (Lelieveld et al., 2015; Silva et al., 2017;
Nieuwenhuijsen et al., 2018). Therefore, a series of stringent clean air
actions have been implemented to improve air quality in China since
2013 (State Council of the People's Republic of China, 2013, 2018). As
a result, air quality index averaged over China has decreased 16% over
2014–2018 (Fan et al., 2020). However, the improvements in air quality
owing to anthropogenic emission abatements may be modulated by
meteorology (Jacob and Winner, 2009). The meteorology may further
contribute to changes in air quality-attributed prematuremortality. Un-
derstanding the extent to which the changed meteorology can affect
strategies to improve air quality and health effect is an important aspect
of this adaptation. Therefore, it is fundamental to assess the impacts of
meteorological variation on air quality and associated health burden
since China's clean air actions.

Fine particulate matter with an aerodynamic diameter of 2.5 μm or
less (PM2.5) and ozone (O3) are the two air pollutants of most concern
for public health. Both PM2.5 and O3 concentrations can be largely influ-
enced by anthropogenic emissions. The PM2.5 levels are affected by the
anthropogenic emissions of sulfur dioxide (SO2), nitrogen oxides (NOx),
ammonia (NH3), black carbon (BC), organic carbon (OC), and non-
methane volatile organic compounds (NMVOCs), while the dominant
source of surface O3 is the photochemical oxidation of carbonmonoxide
(CO), methane (CH4), and NMVOCs in the presence of NOx (Zhu and
Liao, 2016; Yue et al., 2017). The responses of PM2.5 and O3 to variations
in anthropogenic emissions have been widely investigated (Querol
et al., 2014; Lou et al., 2015; Gao et al., 2016; Tao et al., 2020). Generally,
positive effects of reduced emissions are confirmed for PM2.5

(i.e., improved PM2.5 air quality) since 2013 (Zhang et al., 2019a),
while the impacts on O3 vary by region and time because of the nonlin-
ear relationship between O3 and its precursors (Ding et al., 2019a).

Strong sensitivities of PM2.5 and O3 air quality to meteorology can be
understood via changes in physical and chemical processes (Zhang
et al., 2010; Han et al., 2014; Huang et al., 2018b; Zhang et al., 2018a). A
decreasing trend of wind resource is unfavorable for air pollution disper-
sion (Yang et al., 2017; Zhang andWang, 2020). The decreased planetary
boundary layer height (PBLH)may restrain verticalmixing and lead to the
accumulation of particles (Gao et al., 2015; Chen et al., 2019a). An increase
in temperature or solar radiation can enhance chemical reaction rates of
O3 (Unger et al., 2006; Lee et al., 2014). Less precipitation, which means
weaker wet removal process, may increase air pollutant concentrations
(Racherla and Adams, 2006; Wang et al., 2018).

Numerical simulations or statistical methods have been applied to
assessmeteorological influences on PM2.5 andO3 trends in China by sev-
eral studies (Zhu et al., 2012; Ma et al., 2016; Han et al., 2020). By using
WRF-Chem model, Gao et al. (2020) designed a numerical experiment
with fixed anthropogenic emissions, and reported an increasing trend
of 2.1 μg m−3 yr−1 for wintertime PM2.5 in Beijing in response to varia-
tions inmeteorological conditions over 2002–2016. Applying a stepwise
multiple linear regression (MLR)model, Zhai et al. (2019) calculated the
meteorology-driven PM2.5 trend to be −1.3 μg m−3 yr−1 in Beijing-
Tianjin-Hebei during 2013–2018. Based on the simulation results from
WRF-CMAQ, Liu andWang (2020) found thatmeteorological influences
on O3 trends in China over 2013–2017 varied by regions, and the varia-
tions in maximum daily 8-hour average ozone (MDA8 O3) due to
changed meteorology ranged from −12.7 to +15.3 ppb over China for
years 2014–2017 relative to 2013. Han et al. (2020) used aMLRmethod
and revealed that meteorology contributed to 18% of the increase in
summertime O3 averaged over eastern China during 2013–2018.

Several recent studies have estimated the temporal variations in
PM2.5- and O3-related premature mortality (Zheng et al., 2017; Huang
et al., 2018a; Boogaard et al., 2019; Xie et al., 2019). By using the
WRF-CMAQmodel, Ding et al. (2019b) reported that prematuremortal-
ity attributable to PM2.5 in China was 1.4 million in 2013 but was sub-
stantially reduced to 1.1 million in 2017. Based on the simulation
results from GEOS-Chem model, Dang and Liao (2019) estimated that
prematuremortality caused by O3 exposure increased by 16.0 thousand
in 2017 relative to 2012 over eastern China.

Although these existing studies have revealed the total impacts of
meteorology on PM2.5 and O3 air quality trends in China, the relative
contributions of key meteorological variables to the trends remain un-
clear. Identifying themost influentialmeteorological variable and quan-
tifying its contribution will be helpful to comprehensively understand
the meteorological effects on variations in air quality. Furthermore, al-
though previous studies have estimated the temporal variations in
PM2.5- and O3-attributable excess deaths since 2013, few studies at-
tempt to quantitatively distinguish the individual contribution of each
underlying driver to the variations in PM2.5- and O3-related health bur-
den, especially the contribution from meteorological variations.

This study aims to 1) quantify meteorological influences on trends in
PM2.5 and O3 concentrations in China over 2014–2018, with a novel
focus on the contribution of the most influential meteorological factor to
PM2.5 andO3 trends, by developingMLRmodelswhich correlate observed
PM2.5 and O3 concentrations with meteorological variables during four
seasons. 2) estimate the trends in PM2.5- and O3-related premature mor-
tality in China during 2014–2018, and distinguish the respective contribu-
tions of underlying driving factors, highlighting the contribution from
meteorologically driven variations in PM2.5 and O3 concentrations. We
pay special attention to the trends in PM2.5 and O3 air quality and associ-
ated health burden over three polluted regions in China, i.e., North China
Plain (NCP), Yangtze River Delta (YRD), and Fen-wei Plain (FWP).

2. Data and methods

2.1. Meteorological data

Meteorological parameters for 2014–2018 are retrieved from
European Centre for Medium-Range Weather Forecasts Reanalysis In-
terim (ERA-Interim) data (https://apps.ecmwf.int/datasets/), with the
spatial and temporal resolutions of 0.5° × 0.5° and 3-h, respectively. Fol-
lowing Leung et al. (2018) and Li et al. (2019), twenty-six meteorolog-
ical parameters (Table S1) are adopted as original candidate
meteorological predictors forMLRmodels.We average themover either
24-h or daytimehours (08:00–17:00 local time) to construct the follow-
ing MLR model.

2.2. Air quality data

Hourly concentrations of observed PM2.5 and O3 for 2014–2018 were
obtained from China National Environmental Monitoring Centre (http://
106.37.208.233:20035/). The network covers 944 sites in 2014, growing
to nearly 1500 sites in 2018.We conduct data quality assurance following
Zhu et al. (2019). The dailymean PM2.5 concentrations anddailyMDA8O3

concentrations are calculated to conduct the MLR analysis. In order to
generate continuous gridded concentration data, we interpolate all the
site concentrations onto the ERA-Interim grid (0.5° × 0.5°), by using in-
verse distance weighting (IDW) method (Tai et al., 2012; Shen et al.,
2017). Detailed descriptions of the IDWmethod, and the comparison be-
tween gridded and site concentrations are shown in Text S1 and Figs. S1–
S2. Fig. 1 shows the spatial distributions of 5-year average site and gridded
pollutant concentrations. The interpolated results exhibit better perfor-
mance in denser and more polluted regions, e.g., NCP, YRD, and FWP,
where this study is mainly focused on for further analysis.

2.3. Multiple linear regression model and meteorologically driven variation

Multiple linear regression (MLR) model establishes a function be-
tween a response variable and several explanatory (predictor) variables.

https://apps.ecmwf.int/datasets/
http://106.37.208.233:20035/
http://106.37.208.233:20035/


(a1) site PM2.5 (a2) gridded PM2.5 (a3) PM2.5 trend

(b1) site MDA8 O3 (b2) gridded MDA8 O3 (b3) MDA8 O3 trend

( g m-3)

( g m-3)

( g m-3 yr-1)

( g m-3 yr-1)

NCP: 102.7 g m-3   YRD: 97.2 g m-3   FWP: 92.8 g m-3

NCP: -7.8 g m-3 yr-1 YRD: -4.7 g m-3 yr-1  FWP: -4.7 g m-3 yr-1

NCP: +4.2 g m-3 yr-1  YRD: +3.9 g m-3 yr-1  FWP: +6.6 g m-3 yr-1

NCP: 64.9 g m-3   YRD: 50.5 g m-3   FWP: 60.2 g m-3

Fig. 1. Spatial distributions of 5-year (2014–2018) average (a1) site PM2.5, (b1) site MDA8 O3, (a2) gridded PM2.5, and (b2) gridded MDA8 O3 concentrations, as well as 5-year trends in
gridded (a3) PM2.5 and (b3) MDA8 O3 concentrations over China. The black box covers three polluted regions, i.e. North China Plain (NCP), Yangtze River Delta (YRD), and Fen-wei Plain
(FWP), where this study is mainly focused on. The borders of NCP, YRD, and FWP are shown in red, purple, and green, respectively. The calculated gridded concentrations and trends av-
eraged over each region are listed in corresponding colors. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

3L. Chen et al. / Science of the Total Environment 744 (2020) 140837
In order to quantify the meteorological impacts on changes and trends in
air quality, we develop a stepwiseMLRmodel in this study to establish re-
lationships between pollutant (PM2.5 or MDA8 O3) concentrations and a
set of meteorological variables (predictors) for each region (NCP, YRD,
and FWP) and each season (spring, summer, autumn, and winter). The
MLRmodel has been successfully applied to analyzemeteorological influ-
ences on PM2.5 and O3 variation (Tai et al., 2010; Yang et al., 2019), and
takes the following form:

Ci;s;r tð Þ ¼ b0;i;s;r þ
X

k¼1
N

bk;i;s;r �Metk tð Þ þ ε ð1Þ

where Ci, s, r(t) is the observed daily concentration of pollutant i (PM2.5

or MDA8 O3) for season s and region r,Metk(t) is one of the Nmeteoro-
logical predictors, b0 is the intercept term, bk is the regression coefficient
for the k-th meteorological predictor, and ε is the residual term.

Superior to previous studies, this study conducts more comprehen-
sive selection procedures to obtain “optimalmeteorological predictors”,
shown as the following steps:

Step 1) The correlation coefficients between PM2.5 (MDA8 O3) con-
centrations and original twenty-six candidate meteorological variables
(called “predictors version-0”) are calculated across each region in
each season during 2014–2018 (Tables S2 and S3). The meteorological
variables, which are statistically significant at the 99% confidence
level, are retained as candidate predictors (called “predictors version-
1”) for next selection step.

Step 2) Despite its success in many applications, the MLR model
faces serious difficulties when meteorological predictors are correlated
with each other. To minimize the influences of correlations between
predictors, the variance inflation factor (VIF) is used to test the multi-
collinearity problem (Altland, 1999; Che et al., 2019). As a measure of
collinearity between variables, VIF is calculated as follows:

VIF ¼ 1

1−R2
i

ð2Þ

where Ri
2 is the coefficient of determination obtained by regression be-

tween the i-th predictor and other predictors.We set the threshold of 10
for VIF to represent the maximum acceptability of collinearity (Kutner
et al., 2004). Therefore, themeteorological variableswithVIF larger than
10 are removed, and the remaining candidate variables are retained as
“predictors version-2” for next selection step.

Step 3) In order to obtain the best model fit, the regression is done
stepwise by adding or removingpredictors based onAkaike Information
Criterion (AIC) statistics (Akaike, 1969). When AIC reaches the mini-
mum, the “predictors version-3” are obtained. AIC is calculated using
the following equation:

AIC ¼ T � ln
SSE
T

� �
þ 2� kþ 1ð Þ ð3Þ

where SSE refers to the sumof squared errors∑(C(t)− P(t))2, inwhich
C(t) is the observed concentration, and P(t) is the predicted concentra-
tion by MLR; T is the number of observations used for estimation; k is
the number of predictors used in this regression. After this step, we ob-
tain the “optimal meteorological predictors”.

The optimal meteorological variables, calculated intercepts (b0), re-
gression coefficients (bk), and adjusted coefficients of determinations
(R2) for each region and each season, are listed in Tables S4 and S5.
The calculated adjusted R2, which estimate the fraction of variability
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described byMLR, range from 0.2 to 0.6 for PM2.5 and from 0.5 to 0.8 for
MDA8 O3, indicating that the MLR models perform fairly well.

Once the MLR models are established, the meteorologically driven
change (or trend) in pollutant concentration (ΔP) can be calculated
based on the predicted concentration by MLR (P(t)) directly or calcu-
lated as:

ΔPi;s;r ¼
X

k¼1
N

bk;i;s;r � ΔMetk ð4Þ

where ΔMetk represents the change (or trend) in the k-th meteorologi-
cal variable. The non-meteorologically driven change (or trend),
i.e., meteorologically adjusted change (or trend),which ismainly attrib-
uted to changes in anthropogenic emissions (Seo et al., 2018; Chen et al.,
2020), can be obtained from the difference between observed (ΔC) and
meteorologically driven (ΔP) values. Relative contribution of each me-
teorological variable to the total meteorology-driven change (or trend)
is quantified by the ratio of (bk × ΔMetk) to ΔP. The meteorological var-
iable, which makes the largest contribution, is regarded as the most in-
fluential meteorological variable for PM2.5 (O3) changes or trends.

2.4. Health impact assessment and meteorologically driven variation

The health impact of air pollution is estimated as premature human
mortality using the following equation:

ΔMort ¼ BMR� Pop� AF ð5Þ

whereΔMort is the excess death due to PM2.5 or O3 exposure, BMR is the
baseline mortality rate for a specific disease, Pop is the exposed popula-
tion (adults ≥25 years old), and AF is the attributable fraction defined as
AF ¼ 1−1=RR. The RR, calculated as concentration-response function
(CRF), is the relative risk of cause-specific death attributable to the
change in pollutant concentration.

2.4.1. Baseline mortality rate (BMR)
The annual national cause-specific and age-specific baseline mortality

rates (BMR) are collected from the Global Burden of Disease study (GBD)
results tool (http://ghdx.healthdata.org/gbd-results-tool). We obtain
China's BMR data for noncommunicable diseases (NCD), lower respira-
tory infections (LRI), and chronic respiratory diseases (CRD) from 2014
to 2017. The BMR data in 2018 are unavailable during the conduct of
this study and therefore we adopt the BMR data in 2017 as those in 2018.

2.4.2. Population (Pop)
To obtain gridded and age-specific population data in China for years

2014–2018, we use a combination of the provincial population data
from the China Statistical Yearbook (http://www.stats.gov.cn/tjsj/ndsj/
) and the gridded population data from Global Population for World
(GPW) dataset (https://sedac.ciesin.columbia.edu/data/collection/
gpw-v4/sets/browse). The provincial age-specific population is avail-
able for every year, while the gridded population at the 0.5° × 0.5° res-
olution is available for every five years (i.e., 2010, 2015, 2020, etc.). We
first calculate the proportions of gridded population to provincial popu-
lationwith the gridded and provincial data for year 2015. Assuming the
proportions are constant, the gridded and age-specific population for
2014–2018 can be obtained through multiplying the yearly provincial
age-specific population (age ≥ 25 years) by the proportions.

2.4.3. Concentration-response function (CRF)
1) For PM2.5, RR is derived from the recent Global Exposure Mortality

Model (GEMM), which addresses many limitations associated with
the widely used Integrated Exposure-Response (IER) model and
provides better estimates for highly polluted areas such as China
(Burnett et al., 2018; Zhang et al., 2018b). The GEMM estimates
PM2.5-related mortality due to noncommunicable diseases (NCD)
and lower respiratory infections (LRI). The GEMM NCD + LRI takes
the following form:

RR Cð Þ ¼ exp
θ� log

C−C0

α
þ 1

1þ exp −
C−C0−μ

ν

� �
0
BB@

1
CCA ð6Þ

for adults older than 25 and ambient PM2.5 concentrations (C) larger
than C0 (2.4 μg m−3). Age-specific parameters θ, α, μ, and ν are taken
from Burnett et al. (2018) with inclusion of Chinese cohort. Following
Silva et al. (2016), we conduct 1000 Monte Carlo simulations that ran-
domly sampled from normal distributions of these parameters to esti-
mate the uncertainty.

2) For O3, RR is calculated using the CRF from Jerrett et al. (2009) and
Anenberg et al. (2010), following Eq. (7):

RR Cð Þ ¼ expβ C−C0ð Þ ð7Þ

for adults above 25 and ambient O3 concentrations (C) above C0.We use
the annual meanMDA8 O3 concentration for C and 26.7 ppb for thresh-
old concentration C0, as did in Turner et al. (2016) and Malley et al.
(2017). β is the concentration response factor, which indicates that a
10-ppb increase in annual mean MDA8 O3 concentration is associated
with a 12% (95% CI, 8– 16%) increase in RR (Turner et al., 2016). In this
study, we evaluate O3-related mortality due to all chronic respiratory
diseases (CRD) based on Jerrett et al. (2009). However, we use adults
above 25, to be consistent with PM2.5-related mortality estimate, fol-
lowing Silva et al. (2016) and Zhang et al. (2018b), even though the es-
timation from Jerrett et al. (2009) is for adults above 30. The same
method as PM2.5 is adopted to calculate the uncertainty.

The premature mortality estimation (i.e., Eq. (5)) indicates that the
variations in excess deaths are determined by the variations in BMR,
Pop, and concentration (Conc). The variations in Conc are further influ-
enced by meteorological variations (meteorologically driven) and non-
meteorological variations (meteorologically adjusted), as shown in
Section 2.3. To evaluate the individual contribution to the PM2.5- and
O3-related mortality variations during 2014–2018 from each driving fac-
tor, i.e., variation in meteorologically driven (Met driven) Conc, variation
in meteorologically adjusted (Met adjusted) Conc, variation in Pop, and
variation in BMR,we performexperiments forfive cases in Table 1. Exper-
iment “CTL” represents the normal condition. The mortality variations
owing to Conc variation alone (Pop variation alone, BMR variation
alone) are quantified by changing the Conc (Pop, BMR) from 2014 to
2018 in experiment “Conc” (“Pop”, “BMR”), but keeping the other two fac-
tors fixed at 2014 levels. The mortality variations attributed to Conc vari-
ation are further decomposed into Met driven mortality variations and
Met adjusted mortality variations. The Met driven mortality variations
can be obtained based on Met driven Conc variation (Section 2.3) in ex-
periment “Met driven”. The Met adjusted mortality variations can be cal-
culated by the difference between those in experiment “Conc” and
experiment “Met driven”. The relative contribution from each driver is
quantified by the ratio of the mortality change owing to each factor
alone to the total mortality change from 2014 to 2018. Relative contribu-
tions of individual drivers are normalized owing to the nonlinearity of
health impacts from different driving factors.

3. Meteorological influences on PM2.5 air quality

3.1. Spatiotemporal characteristics of PM2.5 concentrations for 2014–2018

Fig. 1(a2) shows the spatial distribution of five-year (2014–2018)
average PM2.5 concentrations over China. The observed PM2.5

http://ghdx.healthdata.org/gbd-results-tool
http://www.stats.gov.cn/tjsj/ndsj/
https://sedac.ciesin.columbia.edu/data/collection/gpw-v4/sets/browse
https://sedac.ciesin.columbia.edu/data/collection/gpw-v4/sets/browse


Table 1
Experimental design for quantifying the individual contribution from each driving factor to the mortality variations during 2014–2018.

Experiment Concentration
(Conc)

Population
(Pop)

Baseline mortality rate
(BMR)

Purpose

CTL 2014–2018a 2014–2018 2014–2018 Normal condition
Conc 2014–2018a Fixed at 2014 level Fixed at 2014 level Examine the mortality variations owing to Conc variation alone
Met driven 2014–2018b

(Met driven)
Fixed at 2014 level Fixed at 2014 level Examine the mortality variations owing to Met driven Conc variation alone

Pop Fixed at 2014 level 2014–2018 Fixed at 2014 level Examine the mortality variations owing to Pop variation alone
BMR Fixed at 2014 level Fixed at 2014 level 2014–2018 Examine the mortality variations owing to BMR variation alone

a The observed concentrations vary from 2014 to 2018 in CTL and Conc experiments.
b The concentrations vary from 2014 to 2018 driven by meteorological variations alone in Met driven experiment.
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concentrations exhibited high values in NCP, YRD, and FWP, three re-
gions this study was focused on. The five-year mean PM2.5 concen-
trations averaged over NCP, YRD, and FWP were calculated to be
64.9 μg m−3, 50.5 μg m−3, and 60.2 μg m−3 respectively, all of
which were much higher than the National Ambient Air Quality
Standards (i.e., 35 μg m−3). Fig. 1(a3) exhibits the spatial distribu-
tion of five-year trends in observed PM2.5 concentrations over
China. There were general decreasing trends across all of China,
with average trends of −7.8 μg m−3 yr−1, −4.7 μg m−3 yr−1,
and − 4.7 μg m−3 yr−1 for NCP, YRD, and FWP. Yearly PM2.5 levels
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Fig. 2.Observed,meteorologically driven, andmeteorologically adjusted changes in (a) PM2.5 an
mean PM2.5 andMDA8 O3 concentrations for 2014–2018 are shown in solid bars and purple num
to 2018. Blue dotted bars and values represent meteorologically driven changes in PM2.5 or MD
(i.e., meteorologically adjusted) changes reasonably attributed to changed anthropogenic emis
ferred to the web version of this article.)
over 2014–2018 for the three regions are presented in Fig. 2(a). Sig-
nificant decreases were observed in NCP, YRD, and FWP, with reduc-
tions of 32.2 μg m−3 (39%), 20.6 μg m−3 (33%), and 21.9 μg m−3

(30%), respectively, from 2014 to 2018. The decreased anthropo-
genic emissions of SO2, NOx, BC, OC, and primary PM2.5 (shown in
Fig. S3) were regarded as themain causes of improved PM2.5 air qual-
ity (Zhang et al., 2019a). In this study, the PM2.5 decreases from 2014
to 2018 due to non-meteorological variations (i.e., “meteorologically
adjusted”), reasonably attributed to reduced anthropogenic emis-
sions, were estimated to be 23.5 μg m−3, 18.0 μg m−3, and
FWP

(a)PM2.5

(b)MDA8 O3
FWP

20.6 μg m-3

(-2.6)+(-18.0)

Decrease

21.9 μg m-3

(-3.5)+(-18.4)

Decrease

25.9 μg m-3

(+3.8)+(+22.1)

Increase

 μg m-3

47.2 μg m-3

47.3 μg m-3

42.3 μg m-3

 μg m-3

94.2 μg m-3

73.0 μg m-3

61.1 μg m-3

58.5 μg m-3

57.6 μg m-3

51.1 μg m-3

78.6 μg m-3

86.9 μg m-3

93.3 μg m-3

100.9 μg m-3

104.5 μg m-3
105.2 μg m-3

103.8 μg m-3

2014
2015

2016
2017

20185
2016

2017
2018

2014
2015

2016
2017

20185
2016

2017
2018

orologically adjusted

orologically adjusted

d (b)MDA8O3 concentrations from2014 to 2018 forNCP, YRD, and FWP. Observed annual
bers. Black values represent observed PM2.5 decreases andMDA8O3 increases from 2014

A8 O3 concentrations from 2014 to 2018, while those in red represent non-meteorological
sions. (For interpretation of the references to colour in this figure legend, the reader is re-



6 L. Chen et al. / Science of the Total Environment 744 (2020) 140837
18.4 μg m−3 for NCP, YRD, and FWP, accounting for 73%, 87%, and
84%, respectively, of observed PM2.5 decreases (Fig. 2(a)). Similar
contributions were reported in other studies (Chen et al., 2019b;
Zhai et al., 2019).

3.2. Meteorologically driven changes in PM2.5 concentrations from 2014 to
2018

PM2.5 changes caused by meteorological variations are also pre-
sented in Fig. 2(a). Relative to 2014, PM2.5 concentrations in 2018
were decreased by 8.7 μg m−3, 2.6 μg m−3, and 3.5 μg m−3 for NCP,
YRD, and FWP owing to variations in meteorological conditions, con-
tributing 27%, 13%, and 16%, respectively, of observed PM2.5 decreases.
Our estimated meteorological contribution in NCP (27%) to PM2.5 de-
creases from 2014 to 2018 was higher than that obtained by Zhang
et al. (2019a) (16%) and Zhang et al. (2019b) (13%), who focused on
meteorological contribution to PM2.5 decreases from 2013 to 2017.
The discrepancy could be largely explained by favorable weather condi-
tions in 2018. Relative to 2017, PM2.5 concentrations over NCP in 2018
were decreased by 7.3 μg m−3 as a result of meteorological variations,
accounting for 92% of PM2.5 decreases from 2017 to 2018 (Fig. S4(a)).

Meteorologically driven PM2.5 changes relative to previous year for
each season are shown in Fig. S5 (a1)–(d1). Significant PM2.5 decrease
driven bymeteorology for NCP in 2018 relative to 2017wasmainly con-
tributed by the decreases in autumn and winter. Further investigation
indicated that the increased PBLH in autumn and the decreased 2m rel-
ative humidity (RH2) inwinterwere themost influentialmeteorological
variables, with relative contributions of 53% and 51% to meteorology-
driven PM2.5 decreases in autumn and winter, respectively.

The increased PBLH was conducive to enhance the atmosphere's
ability to disperse particulate matters and improve PM2.5 air quality
(Miao et al., 2019). When water vapor was decreased, fewer secondary
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particles were formed through heterogeneous aqueous reactions espe-
cially during heavy pollution periods in winter, which eventually led
to PM2.5 decreases (Liu et al., 2018; Song et al., 2018).

3.3. Meteorologically driven trends of PM2.5 concentrations over
2014–2018

Fig. 3 shows the annual and seasonal trends of PM2.5 concentrations
over 2014–2018. The observed five-year PM2.5 trends in NCP, YRD, and
FWPwere−7.8 μgm−3 yr−1,−4.7 μgm−3 yr−1, and−4.7 μgm−3 yr−1,
with meteorological contributions of −2.0 μg m−3 yr−1 (26%),
−0.5 μg m−3 yr−1 (10%), and −0.7 μg m−3 yr−1 (15%), respectively.
Relative contributions of meteorological variations to observed PM2.5

trends for four seasons were estimated to be −2%~41% in NCP, −2%
~18% in YRD, and 2%~29% in FWP. The largest meteorology-driven
trends of seasonal PM2.5 concentrations for the three regions were
−4.5 μgm−3 yr−1 in NCP during winter,−1.0 μg m−3 yr−1 in YRD dur-
ing summer, and−1.6 μg m−3 yr−1 in FWP during winter, contributing
41%, 18%, and 29% of observed trends, respectively. The calculated
meteorology-driven PM2.5 trend for NCP during winter (−4.5 μg m−3-

yr−1) was consistent with that reported in Zhang et al. (2019a) and
Zhai et al. (2019), which also focused on similar study periods and
study areas.

We further identified the most influential meteorological factors to
the three largest meteorology-driven PM2.5 trends. For NCP in winter,
the most influential meteorological factor, decreased RH2 (−1.4%
yr−1), explained 55% of the PM2.5 trend driven by meteorology. For
YRD in summer, the increased 10 m wind speed (WS10,
+0.1 m s−1 yr−1) was the dominantmeteorological factor and contrib-
uted 33% of themeteorology-driven PM2.5 trend. For FWP in winter, the
increased daytime PBLH (PBLH_Daytime, +14.8 m yr−1) contributed
50% of the meteorologically driven PM2.5 trend. The decreased RH2
YRD FWP
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and increased PBLH were beneficial meteorological conditions for the
improvement of PM2.5 air quality, as illustrated in Section 3.2. South-
westerly winds prevailed over eastern China in summer and the in-
creased wind speeds were conducive to scavenging particulate matters
in YRD (He et al., 2019).

4. Meteorological influences on O3 air quality

4.1. Spatiotemporal characteristics of O3 concentrations for 2014–2018

The spatial distribution of five-year (2014–2018) average MDA8 O3

concentrations over China is presented in Fig. 1(b2). High values of
MDA8 O3 concentrations were also observed in NCP, YRD, and FWP,
with the mean concentrations of 102.7 μg m−3, 97.2 μg m−3, and
92.8 μg m−3, respectively. Fig. 1(b3) shows the spatial distribution of
five-year trends in observed MDA8 O3 concentrations over China. The
observed MDA8 O3 exhibited increasing trends across most of China
but decreasing trends over part regions of southwestern and northeast-
ern China. The average MDA8 O3 trends for NCP, YRD, and FWP were
+4.2 μg m−3 yr−1, +3.9 μg m−3 yr−1, and +6.6 μg m−3 yr−1, respec-
tively. Fig. 2(b) presents yearly MDA8 O3 levels over 2014–2018 for
the three regions. The MDA8 O3 concentrations averaged over NCP,
YRD, and FWP exhibited significant increases of 15.4 μg m−3 (16%),
12.5 μg m−3 (14%), and 25.9 μg m−3 (33%), respectively, from 2014 to
2018. Given that NMVOCs emissions changed little (Fig. S3), the de-
creased anthropogenic emissions of NOxwere regarded as a contributor
to O3 deterioration (Fu et al., 2019; Sun et al., 2019). A recent study con-
ducted by Li et al. (2019) reported that the decreases in PM2.5 since
2013 was also an important factor for O3 increases by slowing down
the aerosol sink of hydroperoxy radicals. In this study, the increases in
MDA8 O3 concentrations owing to non-meteorological variations
(i.e., “meteorologically adjusted”) from 2014 to 2018 in NCP, YRD, and
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FWP were 13.6 μg m−3, 11.2 μg m−3, and 22.1 μg m−3, accounting for
88%, 90%, and 85%, respectively of observed O3 increases (Fig. 2(b)).
Similar contributions were reported in previous studies (Wang et al.,
2019; Liu and Wang, 2020).
4.2. Meteorologically driven changes in O3 concentrations from 2014 to
2018

As shown in Fig. 2(b), from 2014 to 2018, meteorology-driven
changes in MDA8 O3 concentrations were estimated to be
+1.8 μg m−3, +1.3 μg m−3, and +3.8 μg m−3 for NCP, YRD, and FWP,
contributing 12%, 10%, and 15%, respectively, of observed MDA8 O3 in-
creases. The large value of meteorology-driven increase (3.8 μg m−3)
from 2014 to 2018 in FWP was mainly attributed by the significant in-
crease (2.8 μg m−3) due to meteorological variation in 2018 relative to
2017 (Fig. S4(b)).

Fig. S5(a2)–(d2) present meteorologically driven MDA8 O3 changes
relative to previous year for each season. The significant MDA8 O3 in-
crease driven by meteorology for FWP from 2017 to 2018 was mainly
contributed by the increases in spring and autumn. Further investiga-
tion indicated that the increased daily maximum 2 m temperature
(T2_Max) in spring and the increased PBLH_Daytime in autumn were
the most influential meteorological variables, with relative contribu-
tions of 30% and 71% to meteorology-driven MDA8 O3 increases in
spring and autumn, respectively.

The increases in temperature enhanced the photochemical produc-
tion of O3 and accelerated biogenic emissions of O3 precursors, which
led to O3 deterioration (Liu and Wang, 2020). With the development
of PBL, more O3 were transported downward from the upper atmo-
sphere to the near surface, resulting in the increases in surface-layer
O3 concentrations (Sun et al., 2009; He et al., 2017).
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4.3. Meteorologically driven trends of O3 concentrations over 2014–2018

The annual and seasonal trends of MDA8 O3 concentrations over
2014–2018 are shown in Fig. 4. The observed five-yearMDA8 O3 trends
in NCP, YRD, and FWP were +4.2 μg m−3 yr−1, +3.9 μg m−3 yr−1, and
+6.6 μg m−3 yr−1, with meteorological contributions of +0.7 μg m−3-

yr−1 (18%), +0.7 μg m−3 yr−1 (17%), and +0.8 μg m−3 yr−1 (12%), re-
spectively. The percentage contributions of meteorological variations to
observed MDA8 O3 trends for four seasons were estimated to be
9% ~ 36% in NCP, −21%~43% in YRD, and 3%~25% in FWP. The largest
contributions of meteorology to observed seasonal MDA8 O3 trends
for the three regions all occurred in autumn, with values of 36%, 43%,
and 25% for NCP, YRD, and FWP.

Further investigation was conducted to identify the most influential
meteorological factors to the three largest meteorology-driven MDA8
O3 trends. For NCP in autumn, the increased daytime surface solar radi-
ation downwards (SSRD_Daytime, +28.9 W m−2 yr−1) was the domi-
nant meteorological factor and contributed 39% of the meteorology-
driven MDA8 O3 trend. For YRD in autumn, the most influential meteo-
rological factor, increased PBLH_Daytime (+16.9 m yr−1), explained
42% of the MDA8 O3 trend driven by meteorology. For FWP in autumn,
the decreased RH2 (−1.8% yr−1) contributed 36% of the meteorology-
driven MDA8 O3 trend. Strong solar radiation promoted photochemical
reactions and resulted in elevated O3 levels (Chang et al., 2019). The de-
velopment of PBL promoted the downward transportation of O3 from
upper atmosphere to near surface and caused the increases in surface-
layer O3 concentrations (Sun et al., 2009; He et al., 2017). Decreased rel-
ative humidity was always accompanied by lower cloud fraction which
accelerated photochemical production of O3 (Camalier et al., 2007).
Some complicated chemistry processes inhibited O3 formation under
high humidity level, therefore decreased relative humidity led to O3 in-
creases (Yu, 2018).

5. Meteorological influences on PM2.5– and O3– related health
burden

5.1. The PM2.5–related mortality variations over 2014–2018

Annual variations in PM2.5-related premature deaths during
2014–2018 relative to 2014 for NCP, YRD, and FWP are shown in Fig. 5
(a1)–(a3). The PM2.5-related premature mortalities exhibited signifi-
cant decreasing trends of −28.2 thousand yr−1, −21.4 thousand yr−1,
and−20.3 thousand yr−1 for the three regions. The decreases in deaths
were attributed to four contributing factors, i.e., meteorologically driven
concentration variation (Met driven), meteorologically adjusted con-
centration variation (Met adjusted), population variation (Pop), and
baseline mortality rate variation (BMR). The meteorology-driven de-
creases in PM2.5 concentrations led to overall decreases in PM2.5-
related mortalities with trends of −7.4 thousand yr−1, −2.2 thousand
yr−1, and −3.0 thousand yr−1 for NCP, YRD, and FWP, contributing
26%, 10%, and 15% of the total PM2.5-relatedmortality trends. Themete-
orologically adjusted decreases in PM2.5 concentrations, mainly attrib-
uted to reduced anthropogenic emissions, resulted in remarkable
mortality decreases of−16.1~−20.1 thousand yr−1 across the three re-
gions. Population growth exerted negative health effects and caused
mortality increases of +2.3~+2.8 thousand yr−1. The decreased BMR
owing to improved medical conditions brought about positive health
impacts and led to mortality decreases ranging from −3.3 thousand
yr−1 to −3.6 thousand yr−1.

We further examined the changes in PM2.5-related deaths from2014
to 2018, and the percentage contributions from the four driving factors
in Table 2. The PM2.5-related premature mortalities were estimated to
be 479.8 thousand, 441.7 thousand, and 493.0 thousand in 2014 for
NCP, YRD, and FWP, and decreased by 113.3 thousand, 90.5 thousand,
and 89.6 thousand, respectively, from 2014 to 2018. The improved
PM2.5 air quality driven bymeteorological variation led to overall health
benefits, accounting for 29%, 13%, and 16%of the total avoided deaths for
NCP, YRD, and FWP, respectively. Meteorologically adjusted decreases
in PM2.5 concentrationsmade considerable contributions to health ben-
efits, with 72%~89% across the three regions. Population growth caused
negative health effects and accounted for −12%~−10%. The decreased
BMR contributed 9%~12% of the total avoided deaths. In summary, me-
teorologically driven decreases in PM2.5 concentrations, meteorologi-
cally adjusted decreases in PM2.5 concentrations, population growth,
and reductions in baseline mortality rate, respectively, contributed
13%~29%, 72%~89%, −12%~−10%, and 9%~12%, to the total avoided
PM2.5-related mortalities between 2014 and 2018 for NCP, YRD, and
FWP.

5.2. The O3–related mortality variations over 2014–2018

Annual variations in O3-related premature deaths during
2014–2018 relative to 2014 for NCP, YRD, and FWP are shown in Fig. 5
(b1)–(b3). The O3-related premature mortalities exhibited significant
increasing trends of +2.1 thousand yr−1, +2.9 thousand yr−1, and
+4.8 thousand yr−1 for the three regions. The meteorology-driven in-
creases in MDA8 O3 concentrations led to overall increases in O3-
related mortalities with trends of +0.5 thousand yr−1, +0.9 thousand
yr−1, and +0.7 thousand yr−1 for NCP, YRD, and FWP, contributing
24%, 31%, and 15% of the total O3-relatedmortality trends. Themeteoro-
logically adjusted increases in MDA8 O3 concentrations resulted in re-
markable mortality increases of +1.9~+4.5 thousand yr−1 across the
three regions. Population growth exerted negative health effects and
causedmortality increases of +0.2~+0.3 thousand yr−1. The decreased
BMR owing to health medical conditions brought about positive health
impacts and led to mortality decreases ranging from −0.4 thousand
yr−1 to −0.6 thousand yr−1.

We further examined the changes in O3-related deaths from 2014 to
2018, and the percentage contributions from the four driving factors in
Table 2. The O3-related excess deaths were evaluated to be 49.2 thou-
sand, 38.5 thousand, and 34.6 thousand in 2014 for NCP, YRD, and
FWP, and increased by 6.5 thousand, 9.2 thousand, and 18.0 thousand,
respectively, from 2014 to 2018. The deteriorated O3 air quality induced
by meteorological variation caused overall health burden, accounting
for 17%, 29%, and 16% of the total increased deaths for NCP, YRD, and
FWP, respectively. The meteorologically adjusted increases in MDA8
O3 concentrations made great contributions to the health burden, with
79%~98% across the three regions. Population growth also led to in-
creased deaths and accounted for 3%~17%. The decreased BMR contrib-
uted−32%~−8% of the total increased deaths. Overall, meteorologically
driven increases inMDA8 O3 levels, meteorologically adjusted increases
in MDA8 O3 levels, population growth, and reductions in baseline mor-
tality rate, respectively, contributed 16%~29%, 79%~98%, 3%~17%, and
−32%~−8%, to the total increased O3-related mortalities from 2014 to
2018 for NCP, YRD, and FWP.

6. Conclusions

We developed multiple linear regression (MLR) models to identify
meteorological influences on the trends in PM2.5 and O3 concentrations
and associated health burden for three regions (NCP, YRD, and FWP) in
China over 2014–2018. The contributions of the most influential mete-
orological factors to PM2.5 and O3 trends were highlighted.

The observed five-year PM2.5 trends in NCP, YRD, and FWP were es-
timated to be−7.8 μg m−3 yr−1,−4.7 μg m−3 yr−1, and−4.7 μg m−3-

yr−1, with meteorological contributions of −2.0 μg m−3 yr−1 (26%),
−0.5 μg m−3 yr−1 (10%), and −0.7 μg m−3 yr−1 (15%), respectively.
The largest meteorological contributions to seasonal PM2.5 trends for
the three regions were 41% in NCP during winter, 18% in YRD during
summer, and 29% in FWP during winter. The decreased RH2, the in-
creased WS10, and increased daytime PBLH were the most influential
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Fig. 5. Annual variations in (a1–a3) PM2.5- and (b1–b3) O3-related premature deaths during 2014–2018 relative to 2014 for NCP, YRD, and FWP, under normal condition (CTL, shown in
black line), owing to meteorologically driven concentration variation alone (Met driven, shown in dark blue line), owing to meteorologically adjusted concentration variation alone (Met
adjusted, shown in red line), owing to population variation alone (Pop, shown in brown line), owing to baselinemortality rate variation alone (BMR, shown in light blue line). The 5-year
trends calculatedunder each condition are presented in valueswith corresponding colors. The BMRdata in 2018 are the same as those in 2017 because of theunavailability of the BMRdata
in 2018 during the conduct of this study. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Estimated PM2.5- and O3-related premature deaths in 2014 (in thousands, 95% confidence intervals), the changed deaths from 2014 to 2018 (in thousands, 95% confidence intervals), and
the percentage contributions to the changed deaths from four factors, i.e., meteorologically driven concentration (Conc) change (Met driven),meteorologically adjusted Conc change (Met
adjusted), population (Pop) change, and baseline mortality rate (BMR) change.

Region Deaths
(in 2014)

Changed deaths
(2018–2014)

Conc change alone Pop change alone
(%)

BMR change alone
(%)

Met driven (%) Met adjusted (%)

PM2.5 NCP 479.8 (465.7, 493.8) −113.3 (−116.1, −110.6) 29 72 −10 9
YRD 441.7 (428.4, 455.1) −90.5 (−92.8, −88.2) 13 89 −12 10
FWP 493.0 (478.4, 507.6) −89.6 (−91.8, −87.4) 16 82 −10 12

O3 NCP 49.2 (47.8, 50.6) +6.5 (+6.3, +6.6) 17 98 17 −32
YRD 38.5 (37.4, 39.7) +9.2 (+8.9, +9.4) 29 79 10 −18
FWP 34.6 (33.6, 35.7) +18.0 (+17.6, +18.4) 16 89 3 −8
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meteorological factors, and contributed 55%, 33%, and 50%, respectively,
of the three largest meteorology-driven seasonal PM2.5 trends.

The observed five-yearMDA8 O3 trends in NCP, YRD, and FWPwere
calculated to be+4.2 μgm−3 yr−1,+3.9 μgm−3 yr−1, and+6.6 μgm−3-

yr−1, with meteorological contributions of +0.7 μg m−3 yr−1 (18%),
+0.7 μg m−3 yr−1 (17%), and +0.8 μg m−3 yr−1 (12%), respectively.
The largest meteorological contributions to seasonal MDA8 O3 trends
for the three regions all occurred in autumn, with values of 36%, 43%,
and 25% for NCP, YRD, and FWP. The increased daytime SSRD, the in-
creased daytime PBLH, and the decreased RH2were themost influential
meteorological factors, and contributed 39%, 42%, and 36%, respectively,
of the three largest meteorology-driven seasonal MDA8 O3 trends.

The PM2.5-related premature mortalities exhibited significant de-
creasing trends of −28.2 thousand yr−1, −21.4 thousand yr−1, and
−20.3 thousand yr−1 for NCP, YRD, and FWP during 2014–2018. The
meteorology-driven decreases in PM2.5 concentrations led to overall de-
creases in PM2.5-related mortalities with trends of−7.4 thousand yr−1,
−2.2 thousand yr−1, and−3.0 thousand yr−1 for the three regions. The
O3-related prematuremortalities exhibited significant increasing trends
of +2.1 thousand yr−1, +2.9 thousand yr−1, and +4.8 thousand yr−1

for NCP, YRD, and FWP over 2014–2018. The meteorology-driven in-
creases in MDA8 O3 concentrations led to overall increases in O3-
related mortalities with trends of +0.5 thousand yr−1, +0.9 thousand
yr−1, and +0.7 thousand yr−1 for the three regions.

The findings from the present study emphasize the important role of
meteorology in PM2.5 and O3 air quality and associated health burden
over China, and have important implications for China's air quality plan-
ning. In particular, the adverse effects of meteorology on O3 air quality
and O3-related health burden should be considered when making
ozone pollution control strategy. More efforts in emission control
should be taken to offset the adverse effects on ozone caused by
meteorology.

Meteorological impacts on air quality vary by regions in China,
and the meteorology-driven changes can be comparable or even
more significant than those caused by anthropogenic emissions
(Liu and Wang, 2020). Therefore, it is of great importance to iden-
tify the most influential meteorological variables for PM2.5 (O3)
changes over the whole China since clean air actions. The trends
of the dominant meteorological variables may be used as a refer-
ence metric for China's air quality planning. Air pollution can be af-
fected by meteorological variations on multiple timescales
(e.g., long-term trend and day-to-day variability) (Tai et al., 2010;
Seo et al., 2018). In this study, meteorological influences on five-
year trends have been quantified by MLR models. Understanding
the synoptic-scale correlations between PM2.5 (O3) levels and me-
teorological variables are also important to air quality (Henneman
et al., 2015; Han et al., 2020). The Kolmogorov-Zurbenko (KZ) filter
can be used to decompose the time series into different timescales
and quantify the effects of short-term meteorological fluctuations
on air pollution, which will be further issues that need to be
addressed.
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