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• Past and future changes in O3-mortality
and respective leading cause are exam-
ined.

• During 2013–2019, national O3-mortality
exhibits a trend of +14.1 thousand yr−1.

• The O3 air quality deterioration contrib-
utes 90.1 % of 2013–2019 O3-mortality
rise.

• From 2019 to 2030, national O3-mortality
will increase by 50.4–103.7 thousand.

• Population aging will become the primary
cause of future O3-mortality rises.
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We systematically examine historical and future changes in premature respiratory mortalities attributable to ozone
(O3) exposure (O3-mortality) in China and identify the leading cause of respective change for the first time. The histor-
ical assessment for 2013–2019 is based on gridded O3 concentrations generated by a multi-source-data-fusion algo-
rithm; the future prediction for 2019–2030 uses gridded O3 concentrations projected by four Coupled Model
Intercomparison Project Phase 6 (CMIP6) models under three Shared Socioeconomic Pathways (SSP) scenarios. Dur-
ing 2013–2019, national annual O3-mortality is 176.3 thousand (95%CI: 123.5–224.0 thousand) averaged over
2013–2019 with an increasing trend of 14.1 thousand yr−1 (95%CI: 10.2–17.4 thousand yr−1); sensitivity experi-
ments show that the O3-mortality varies at a rate of +12.7 (95%CI: 9.2–15.6), +5.8 (95%CI: 4.0–7.4), +1.0 (95%
CI: 0.7–1.2),−5.4 (95%CI:−6.9 to−3.7) thousand yr−1, owing to changes inO3 concentration, population age struc-
ture, population size, mortality rate for respiratory disease, respectively. The deterioration of O3 air quality, shown as
significant increase inO3 concentration, is identified as the primary factorwhich contributes 90.1% of 2013–2019O3-
mortality rise. Compared with O3-mortality estimated in this study, the widely-used O3-mortality assessment method
based on urban-site-dominant O3 measurements generates close national O3-mortality but overestimates (underesti-
mates) provincial O3-mortality in coastal (central) provinces. From 2019 to 2030, national O3-mortality is projected
to increase by 50.4–103.7 thousand under different SSP scenarios. The change in age structure (i.e. population
aging) alone will result in significant O3-mortality rises of 137.9–160.5 thousand. Compared with 2013–2019
rapid O3 increase (+2.5 μg m−3 yr−1 at national level), O3 concentrations are projected to increase at a lower rate
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(+0.4 μg m−3 yr−1 in SSP5–8.5) or even decrease (−0.7 μg m−3 yr−1 in SSP1-2.6) from 2019 to 2030. Therefore,
population aging, in place of O3 air quality deterioration, will become the leading cause of future O3-mortality rises
during the coming decade.
1. Introduction

China has witnessed significant PM2.5 declines and rapid O3 rises since
the implementation of a series of drastic air pollution control measures in
2013. The national population–weighted PM2.5 concentration decreased
by 32 % during 2013–2017 (Zhang et al., 2019), while the population–
weighted O3 concentration increased with a rate of +2.1 μg m−3 yr−1 at
the national level during the five years (Xue et al., 2020). Now O3 is replac-
ing PM2.5 as the primary pollutant during summer in most regions of China.
Previous studies have confirmed that exposure to O3 can cause respiratory
diseases (Jerrett et al., 2009; Anenberg et al., 2010; Liu et al., 2018; Xie
et al., 2019; Zhong et al., 2019; Yin et al., 2020; Chen et al., 2021; Guo
et al., 2021). However, compared with the massive focuses on the health
benefits from improved PM2.5 air quality (Xue et al., 2019; Zhang et al.,
2019; Zheng et al., 2019; Chen et al., 2020; Jiang et al., 2020; Yue et al.,
2020), less attention is paid to the increased health burden caused bywors-
ened O3 pollution (Madaniyazi et al., 2016; Lu et al., 2020; Wang et al.,
2020; Zhang et al., 2021).

Health burden assessment of O3 exposure firstly depends on the acqui-
sition of O3 concentration. Up to now, O3 concentration over China can
be obtained from the Chinese nationwide air quality monitoring network,
satellite retrievals, numerical simulations, and multi-source data fusion
models. In situ O3 observations from the China National Environmental
Monitoring Centre (CNEMC) became available in 2013 and have been
used to evaluate O3 pollution and associated health impacts in China
since then (Lu et al., 2018, 2020; Feng et al., 2019; Chen et al., 2020;
Maji and Namdeo, 2021; Wang et al., 2021). However, over 90 % of
CNEMC monitoring sites are located in urban areas which only account
for 2 % of the whole country's area and 50 % of the national total popula-
tion (Gao et al., 2020; Kong et al., 2021), leading to possible deviations
when the urban-site-dominant observations are used to assess the health
risks from O3 exposure at a national or provincial level (Chen et al., 2019;
Gao et al., 2020; Malashock et al., 2022). Gridded data from satellite re-
trievals and numerical simulations provide a relatively complete spatial
coverage of O3 concentration. However, most remote sensing products of
O3 are column concentrations which are less indicative of surface-layer pol-
lution. Although satellite observations have been shown to have some sen-
sitivity to boundary layer O3 pollution, they have deviations because of
weak retrieval sensitivity and larger upper tropospheric variability in cer-
tain places as well as susceptibility to meteorological factors (Liang et al.,
2019; Shen et al., 2019). Numerical simulations, including simple statistical
models and/or complex chemical transport models, generally predict
underestimated/overestimated surface-layer O3 due to the uncertainties
brought by emission inventories and O3 photochemistry (Travis et al.,
2016; Li et al., 2019; Marco et al., 2022). More recently, a data-fusion algo-
rithm for O3 estimation that combines in situ observations, satellite remote
sensing measurements, and model simulations was developed (Xue et al.,
2020; Xiao et al., 2022); the corresponding database named “Tracking Air
Pollution in China” (TAP) was released and provided gridded ground-
layer O3 concentrations over China since 2013. The TAP database exhibits
excellent performance on observed O3 concentrations. With a more com-
plete spatiotemporal coverage, the TAP O3 database, therefore, is suitable
for applying to O3 health assessment.

Projecting future O3 concentration is essential for future O3 health bur-
den assessment. Numerical model is the most common way to predict fu-
ture O3 concentrations. Earlier modeling studies to project future O3

concentrations generally used the Intergovernmental Panel on Climate
Change (IPCC) Special Report on Emissions Scenarios (SRES) that were de-
signed for the IPCCFourthAssessment Report (Wang et al., 2013; Zhu et al.,
2

2017), and Representative Concentration Pathways (RCPs) emissions sce-
narios that were developed for the Fifth Coupled Model Intercomparison
Project (CMIP5) simulations in support of the IPCC Fifth Assessment Report
(Zhu and Liao, 2016;Meehl et al., 2018). More recently, the CoupledModel
Intercomparison Project Phase 6 (CMIP6) provides an opportunity to up-
date the assessment of future air quality by using the latest generation of cli-
mate and Earth SystemModels. A new set of future scenarios named Shared
Socioeconomic Pathways (SSPs) that are generated for CMIP6 indicate a
wide range of trajectories in climate change and emissions, and allow for
an improved analysis of future air quality (Gidden et al., 2019). Turnock
et al. (2020) made a first assessment of historical and future surface O3

changes over different world regions under different SSPs. Since China
has witnessed rapid O3 rises since 2013, it is of interest to project future
O3 levels and associated health burden in the coming decade under the
new SSPs with a special focus on China.

Besides air pollutant concentration, changes in population size, popula-
tion age structure, and death rate of diseases also contribute to the changes
in mortality attributable to ambient air quality (Cohen et al., 2017; Sicard
et al., 2021). During the past decade, China's total population has grown
by 4.9 % and the proportion of the elderly over 65 years old has increased
from8.5% to 12.6%over 2009–2019 (China's National Bureau of Statistics
2020, 2020). The baseline mortality rate for respiratory disease in China
has been declining owing to improving medical conditions (http://ghdx.
healthdata.org/gbd-results-tool). According to World Population Prospects
2019, China's population will peak in 2030 with rapid population aging
(https://population.un.org/wpp/). The futuremortality rate for respiratory
disease over China will also show large decreases in 2030 (Li et al., 2017).
Although several studies have quantified the contributions of changes in
these factors to the change in PM2.5-related mortality over China (Ding
et al., 2019; Yue et al., 2020; Geng et al., 2021), the cause assessment for
O3-related mortality change, both for the past and the future, is very lim-
ited. Quantitatively distinguishing the factors driving changes in O3-
relatedmortality is helpful to identify the challenges thatmust be overcome
to reduce the public health impact of exposure to O3 pollution.

This study aims to (1) obtain the spatiotemporal characteristics of O3-
related health impacts in China during 2013–2019, based on gridded O3

concentration provided by a newly developed database named TAP;
(2) quantify the relative contributions of four underlying driving factors
(population size, population age structure, mortality rate for respiratory
disease, and O3 concentration) to the changes in premature respiratory
mortalities attributable to long-term O3 exposure (thereafter denoted as
O3-mortality) in China during 2013–2019; (3) predict future changes in
O3-mortality under SSP scenarios based on gridded O3 concentration
projected by CMIP6 and distinguish the respective contribution of each fac-
tor over China from 2019 to 2030.

2. Materials and methods

2.1. Ozone concentration

The O3 concentration over China during 2013–2019 is estimated by a
data-fusion algorithm that combines in situ observations, satellite remote
sensing measurements, and WRF-CMAQ model results (Xue et al., 2020;
Xiao et al., 2022). The O3 database named “Tracking Air Pollution in
China” (TAP) has a horizontal resolution of 0.1° × 0.1° and can be publicly
accessed from http://tapdata.org.cn/. Detailed data fusion steps can be
found in Xue et al. (2020) and Xiao et al. (2022). Comparedwith in situ ob-
servations and satellitemeasurements, the griddedO3 data has amore com-
plete spatiotemporal coverage; compared with model simulations, the O3

http://ghdx.healthdata.org/gbd-results-tool
http://ghdx.healthdata.org/gbd-results-tool
https://population.un.org/wpp/
http://tapdata.org.cn/
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data based onmulti-source data fusion exhibitsmore excellent performance
on O3 concentration. Given above advantages and latest study period, the
state-of-the-art O3 estimates are chosen to support health assessment
since China's clean air actions in this study. We conduct comparisons of
TAP versus CNEMCO3 concentrations in Fig. 1. The observedO3 concentra-
tions from CNEMC can be obtained at http://106.37.208.233:20035/. The
calculated normalized mean bias (NMB) is smaller than 1 % and index of
agreement (IOA) is larger than 0.9 for each year, verifying the high perfor-
mance of TAP O3 database.

Future O3 concentrations in 2030 are taken from CMIP6 simulations
under different SSP scenarios. It is noted that the O3 concentration in year
2030 is very close to the mean value during 2026–2034; their differences
are less than±0.6 %. Therefore, the concentration in year 2030 can repre-
sent the multi-year mean O3 level to some extent. The SSPs used in CMIP6
projections represent an update from the RCPs used in CMIP5 experiments
as they include socioeconomic development pathwayswith aims to achieve
a certain level of climate mitigation (van Vuuren et al., 2014; Riahi et al.,
2017). The future projections in this study are based on three different
SSP scenarios (SSP1-2.6 (strong-mitigation scenario), SSP2-4.5 (middle-
of-the-road scenario), and SSP5-8.5 (weak-mitigation scenario)) and four
CMIP6 models (BCC-CSM2-MR, GFDL-ESM4, MPI-ESM1-2-HR, NorESM2-
MM)which have a horizontal resolution of 100 km. For consistency, the fu-
ture O3 data are regridded into 0.1° × 0.1° by using bilinear interpolation.

2.2. Population and age structure

We use a combination of gridded population data from LandScan
(https://landscan.ornl.gov/) and provincial population data from China
Statistical Yearbook (CSY, http://www.stats.gov.cn/tjsj/ndsj/) to obtain
gridded and age-specific population data over China for years
2013–2019. The gridded population data over 2013–2019 with a horizon-
tal resolution of 1 km are regridded to 0.1° × 0.1° to keep consistent with
concentration data. All gridded population data in a province aremultiplied
year: 2014
station : 923
NMB : -0.6%
IOA : 0.93

(a)

(d)

year: 2015
station : 1458
NMB : -0.8%
IOA : 0.94

year: 2017
station : 1397
NMB : -0.5%
IOA : 0.97

year: 2018
station : 1476
NMB : -0.9%
IOA : 0.97
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Fig. 1.Comparisons of annualmean TAPO3 concentrations versus CNEMCO3 concentra
one at the grid which corresponding CNEMC site locates. The comparison for year 2013 i
shown in each panel are the 1:1, 1:2, 2:1 lines, number of stations, normalized mean bi
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by a factor which is the proportion of provincial population provided by
CSY to the sum of gridded population in corresponding province. The
national-level age-specific (eighteen age groups, 0–4, 5–9, …, 80–84,
85+) population proportions provided by CSY are also applied to each
grid to generate the final gridded and age-specific population data we
want. Fig. 5(a) shows the yearly variations in Chinese population and its
age structure. The future national-level population and age structure data
in year 2030 are derived from Population Pyramid (https://www.
populationpyramid.net/china/2030/). Assuming the proportions of popu-
lation in a grid to total Chinese population are constant from 2019 to
2030, the gridded and age-specific population for year 2030 can be ob-
tained through multiplying the national-level age-specific population in
2030 by the proportions in 2019.
2.3. Baseline mortality rate

The annual national-level age-specific and disease-specific baseline
mortality rates (BMR) are obtained from Global Health Data Exchange
(http://ghdx.healthdata.org/gbd-results-tool). We collect China's age-
specific BMR data of chronic respiratory disease (CRD) from 2013 to
2019 in Fig. 5(b). Future BMR projections of CRD for the year 2030 are
taken from WHO Global Health Estimates (https://colinmathers.com/
2022/05/10/projections-of-global-deaths-from-2016-to-2060/). Some cor-
rections in future BMR data are made according to scaling factors derived
from the comparisons between historical BMRs in the year of 2016 from
Global Health Data Exchange and WHO Global Health Estimates. Briefly,
in the correction step, we first collect BMRs in year 2016 from Global
Health Data Exchange and WHO Global Health Estimates. Then we com-
pare the WHO BMR date with the corresponding value derived from GBD
in each age group. Finally, the scaling factors are adopted to the future
BMR in year 2030, assuming that historical biases persist in the future. It
is noted that future age-specific BMR data for the adults above 30 are
(b) (c)

(e) (f)

year: 2016
station : 1440
NMB : -0.1%
IOA : 0.94

year: 2019
station : 1447
NMB : -0.6%
IOA : 0.98

A8 O3 (μg m-3) CNEMC MDA8 O3 (μg m-3)

tions at all CNEMC sites during 2014–2019. The TAP O3 concentration is the derived
s not conducted because of the unavailability of partial CNEMCO3 data in 2013. Also
as (NMB), and index of agreement (IOA).

http://106.37.208.233:20035/
https://landscan.ornl.gov/
http://www.stats.gov.cn/tjsj/ndsj/
https://www.populationpyramid.net/china/2030/
https://www.populationpyramid.net/china/2030/
http://ghdx.healthdata.org/gbd-results-tool
https://colinmathers.com/2022/05/10/projections-of-global-deaths-from-2016-to-2060/
https://colinmathers.com/2022/05/10/projections-of-global-deaths-from-2016-to-2060/
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divided into three age groups (30–49, 50–69, 70+) rather than twelve age
groups (30–34, 35–39, 40–44, …, 85+) for history BMR data.

2.4. Ozone metrics relevant to human health

Ozonemetrics relevant to human health impacts mainly focus on differ-
ent parts of distributions of ozone concentrations (Lefohn et al., 2018).
Some exposure metrics are used to assess health effects under relatively
higher ozone values, while others focus on a combination of various parts
of ozone distributions. Four metrics are analyzed in this study to character-
ize ozone pollution and their impacts on human health, including:

• AVGMDA8, an epidemiological metric that focuses on chronic exposure,
which is defined as the annual mean of maximum daily 8-h average
(MDA8) O3 (WHO, 2006);

• 4MDA8, an exposure metric that focuses on higher O3 concentrations,
which is defined as the 4th highest MDA8 O3 value over the entire year
(US Federal Register, 2015);

• NDGT70, an exposure metric that focuses on high and mid-level O3 con-
centrations, which is defined as the number of exceedances of MDA8 O3

>70 ppb per year (US Federal Register, 2015);
• SOMO10, an exposure metric that focuses on high-, mid-, and low-level
O3 concentrations, which is defined as the annual sum of the positive dif-
ferences between MDA8 O3 and the cutoff value set at 10 ppb calculated
for all days in a year (REVIHAAP, 2013).

The epidemiological metric (AVGMDA8) characterizes human health
responses to long-term ozone exposure, and the premature respiratorymor-
tality attributable to long-term ozone exposure are calculated by this met-
ric. As Lefohn et al. (2018) emphasized that a common increase/decrease
in ozone concentration could result in dissimilar changes in health metrics
due to their different concerns on low, middle, or high ozone concentra-
tions. So the three metrics of 4MDA8, NDGT70, and SOMO10 are selected
to describe potential impacts of ozone on human health under different pol-
lution levels.

2.5. Premature respiratory mortality attributable to long-term ozone exposure

We estimate premature respiratory mortality attributable to long-term
ozone exposure (O3-mortality) using the following equation (Eq. (1)),
which has been widely used to estimate annual O3-related mortality
(Malley et al., 2017; Lin et al., 2018):

Mortd,t ¼ ∑
a
BMRa,d,t � Popt � AgeStrua,t

� �� AFd,t
� �

(1)

whereMortd, t is the excess death due to O3 exposure, BMRa, d, t is the base-
linemortality rate of disease d for peoplewithin age group a in year t, Popt is
the total population in year t, AgeStrua, t is the proportion of the population
within age group a in year t, and AFd, t is the attributable fraction caused by
disease d in year t defined as AFd,t ¼ 1 � 1=RRd,t

. RRd, t refers to the relative
risk (RR) of cause-specific (disease d) death attributable to the change in O3

concentration in year t, which can be calculated as the concentration-
response function (CRF) as follows:

RRd,t ¼ expβd Conct �Conc0ð Þ (2)
Table 1
Experimental design for examining individual contribution of each factor to O3-mortali

Experiment Baseline mortality rate (BMR) Population
(Pop)

Age structu
(AgeStru)

MortCtl 2013–2019 2013–2019 2013–2019
MortBMR 2013–2019 Fixed at 2013 Fixed at 20
MortPop Fixed at 2013 2013–2019 Fixed at 20
MortAgeStru Fixed at 2013 Fixed at 2013 2013–2019
MortConc Fixed at 2013 Fixed at 2013 Fixed at 20
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for adults ≥ 30 years old. Here βd is the concentration response factor
which indicates that a 10-ppb increase in annualmeanMDA8O3 concentra-
tion is associated with a 12 % (95 % Confidence Interval: 8–16 %) increase
in RR of CRD (Turner et al., 2016); Conct is annual meanMDA8 O3 concen-
tration in year t; Conc0 is the threshold concentration which equals to
26.7 ppb as did in Malley et al. (2017) and Wang et al. (2020). In this
study, we estimate O3-mortality due to all chronic respiratory diseases,
which means that disease d is CRD. Following Dang and Liao (2019) and
Silva et al. (2016), we calculate uncertainties from 1000 Monte Carlo sim-
ulations that randomly sampled from normal distribution of the concentra-
tion response factor βd.

2.6. Driving factor decomposition for historical and future O3-mortality

The estimation for O3-mortality (i.e., Eq. (1)) indicates that premature
deaths are determined by baseline mortality rate (BMR), population
(Pop), age structure (AgeStru), and O3 concentration (Conc). We perform
five sets of experiments as shown in Table 1 to evaluate individual contribu-
tion of each factor to O3-mortality variations during 2013–2019. Experi-
ment “MortCtl” represents the normal condition under which all factors
are changed over 2013–2019. The mortality variations owing to BMR
(Pop, AgeStru, Conc) variations alone are quantified by changing BMR
(Pop, AgeStru, Conc) over 2013–2019 but keeping other factors fixed in
corresponding experiment “MortBMR” (“MortPop”, “MortAgeStru”,
“MortConc”). The similar experimental design is also applied to future O3-
mortality changes. For each SSP scenario, one normal experiment for pres-
ent day (with all factors at 2019 levels) and five experiments for future (one
normal experiment with all factors at 2030 levels and four sensitivity exper-
iments inwhich one factor is at 2030 level but other three factors are kept at
2019 levels) are conducted.

3. Results and discussion

3.1. Spatiotemporal characteristics of ozone-related health burden during
2013–2019

3.1.1. Ozone metrics relevant to human health based on TAP database
The spatiotemporal characteristics of four ozone-health-relatedmetrics,

including AVGMDA8, 4MDA8, NDGT70, and SOMO10, are shown in Fig. 2.
The four metrics, which have been introduced in Section 2.4, are generally
used to assess health impacts of O3 exposure and make health-related poli-
cies (Lefohn et al., 2018; Fleming et al., 2018; Xu et al., 2020). Fig. 2(a1–d1)
show the spatial distributions of 2013–2019means of the four metrics over
China. All metrics exhibit the maximum values over North China Plain;
high values of AVGMDA8 and SOMO10, two metrics focusing on the
mean O3 level and a combination of various parts of O3 distribution (see
Section 2.4), are also distributed over the northwestern China. The national
average AVGMDA8, 4MDA8, NDGT70, and SOMO10 are calculated to be
81.9 μg m−3, 127.9 μg m−3, 2.0 days, and 6.9 mg m−3 day, respectively.
The 2013–2019 trends of the four metrics over China are exhibited in
Fig. 2(a2–d2). Increasing trends of all four metrics are observed across al-
most the whole China; the seven-year trends of the four metrics over
China are +2.5 μg m−3 yr−1, +3.8 μg m−3 yr−1, +0.5 days yr−1, and
+ 0.3 mg m−3 days yr−1, respectively. The maximum values of seven-
year trends are located over North China Plain for all four metrics; the phe-
nomenon is more pronounced for 4MDA8 and NDGT70 which focus on
ty variations during 2013–2019.

re Concentration
(Conc)

Purpose

2013–2019 Mortality variations during 2013–2019
13 Fixed at 2013 Mortality variations owing to BMR variations alone
13 Fixed at 2013 Mortality variations owing to Pop variations alone

Fixed at 2013 Mortality variations owing to AgeStru variations alone
13 2013–2019 Mortality variations owing to Conc variations alone



2013  2014  2015  2016   2017  2018  2019
Mean Mean

(μg m-3)

(μg m-3)

(mg m-3 day) (mg m-3 day yr-1)

(days)

(μg m-3 yr-1)

(μg m-3 yr-1)

(days yr-1)

AVGMDA8 (μg m-3)

4MDA8 (μg m-3)

NDGT70 (days)

SOMO10 (mg m-3 day)

(a3)

(b1) (b2)
(b3)

(c1) (c2)
(c3)

(d1) (d2)
(d3)

4MDA8: 127.9 μg m-3

NDGT70: 2.0 days

SOMO10: 6.9 mg m-3 day

4MDA8: 3.8 μg m-3 yr-1

NDGT70: 0.5 days yr-1

SOMO10: 0.3 mg m-3 day yr-1

(a2) AVGMDA8: 2.5 μg m-3 yr-1(a1) AVGMDA8: 81.9 μg m-3
Cumulative population (%)

498.7 million (55.7%)
129.1 million (15.4%)

606.6 million (67.8%)
268.3 million (32.0%)

408.0 million (45.6%)
99.3 million (11.8%)

352.1 million (39.3%)
92.5 million (11.0%)

Fig. 2. Spatial distributions of 7-year (a1–d1) mean and (a2–d2) trend in four ozone metrics (AVGMDA8, 4MDA8, NDGT70, and SOMO10) during 2013–2019 over China.
(a3–d3) Population exposure (adults above 30 years old) to O3 pollution denoted by four metrics for each year during 2013–2019. Statistically significant trends with 95 %
confidence level are marked with dots in (a2–d2). The metric values and trends averaged over China are shown at the top of each panel in (a1–d1) and (a2–d2). Population
exposure curves for individual years during 2013–2019 are shown by light thin lines while the curves averaged for 2013–2016 (2017–2019) are represented by dark thick
blue (red) lines in (a3–d3).
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high and mid-level O3 concentrations. The national AVGMDA8 trend esti-
mated in this study (i.e. +2.5 μg m−3 yr−1) is quite close to that in Xiao
et al. (2022) who reported a trend of +2.48 μg m−3 yr−1; the AVGMDA8
trend also exhibits the similar spatial distribution (Fig. 2(a2)) as that in
Xue et al. (2020).

For further analysis on health impacts, Fig. 2(a3–d3) depict population
exposure to O3 pollution denoted by four metrics for each year during
2013–2019. For each metric, the curves gradually move to the right from
2013 to 2019, robustly confirming the deterioration of O3 pollution and
amplification of related health outcomes. The population percentage
exposed to air with AVGMDA8 larger than 90 μg m−3 (4MDA8 > 180 μg
m−3, NDGT70 > 50 days, SOMO10 > 24 mg m−3 day) grows from
15.4 % (11.8 %, 11.0 %, 32.0 %) in 2013–2016 to 55.7 % (45.6 %, 39.3 %,
67.8 %) in 2017–2019.
5

3.1.2. Ozone-related mortality based on TAP database
We use premature respiratory mortalities attributable to long-term O3

exposure (denoted as O3-mortality) to more intuitively exhibit the health
impacts of O3 exposure. Fig. 3(a–b) show spatial distributions of 7-year
mean and trend in O3-mortality during 2013–2019 over China; Fig. 3(c–d)
present age-specific O3-mortality and the corresponding trend in 31 prov-
inces of China. The population-weighted AVGMDA8 and the corresponding
trend in each province are also shown. High O3-mortalities are distributed
over North China Plain, Yangtze River Delta, Pearl River Delta, and Sichuan
Basin, where O3 levels (Fig. 2(a1)) and population densities exhibit high
values; top five provinces with >10 thousand O3-mortalities are Shandong,
Henan, Guangdong, Jiangsu, and Hebei. Increasing trends in O3-mortalities
are observed across almost the whole China, with hotspots located in devel-
oped cities; top five provinces with O3-mortality trends over 1.0 thousand
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Fig. 3. Spatial distributions of 7-year (a) mean and (b) trend in premature respiratory mortalities attributable to long-term O3 exposure (denoted as O3-mortality) during
2013–2019 over China. Age-specific (c) O3-mortality and (d) corresponding trend in 31 provinces of China. Statistically significant trends with 95 % confidence level are
marked with dots in (b). The pie charts in (c) and (d) exhibit percentage contributions from different age groups. The dot lines in (c) and (d) are population-weighted
AVGMDA8 and the corresponding trend in each province. The error bars in (c) and (d) show the 95% confidence interval (CI). The provinces that the abbreviations represent
in (c) and (d) are listed in Table 2.
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yr−1 are Henan, Shandong, Hebei, Anhui, and Guangdong. Rapid O3 in-
creases (maximum O3 trend of +6.0 μg m−3 yr−1, Fig. 2(a2)) contribute
greatly to the increasing O3-mortality trends in Anhui. Analyzing the sever-
ities of ozone-related mortalities in all the provinces in China, population-
weighted AVGMDA8 concentrations show different patterns with large
values in some provinces where the calculated O3-mortality is weak
(e.g., Shanghai and Tianjin). This is because, in these provinces, the O3 pol-
lution is serious but the population base is small. All these can indicate that
the results generated from population-weighted estimates may not be suit-
able for accurately assessing premature mortality.

The national annual O3-mortality is estimated to increase by 51.0 %
from 2013 to 2019, which is quite close to that in Xiao et al. (2022) who re-
ported an increase of 49.3 %. For both O3-mortality value and trend, the
Dang and Liao (2019): GEOS-Chem

This study: TAP

This study: CNEMC
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elder groups contribute more. The national O3-mortality is 176.3 thousand
(95%CI: 123.5–224.0 thousand)with an increasing trend of 14.1 thousand
yr−1 (95 % CI: 10.2–17.4 thousand yr−1) during 2013–2019; the elderly
over 65 years old contribute 90.8 % and 93.8 % of the total O3-mortality
and its increasing trend, which can be explained by the high baseline mor-
tality rates for the elderly over 65 (Fig. 5(b)).

3.1.3. Comparisons between TAP-based ozone-related mortality with others
Since the availability of CNEMC O3 measurements, the O3-mortality es-

timation has been widely based on the CNEMC O3 concentrations. How-
ever, the urban-site-dominant O3 observations which almost can only
stand for urban pollution levels may cause possible deviations when
assessing O3-mortality at a national or provincial level, as introduced in
(thousand)

(b)

2019

exposure (denoted as O3-mortality) during 2013–2019 for China based on TAP grid
(CNEMC minus TAP) O3-mortalities over China averaged during 2014–2019. The
CNEMCO3 concentrations in 2013. Also shown in (a) is yearly national O3-mortality
rror bars in (a) indicate the 95% confidence interval (CI). The calculated CNEMCO3-
d in Table 2.
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Introduction section. Here, we conduct comparisons of national (provin-
cial) O3-mortality based on TAP grid vs. CNEMC site O3 concentrations in
Fig. 4 and Table 2. Given that TAP O3 database not only reproduces the ob-
servedO3 concentrations fairly well (Section 2.1) but also shows advantage
in spatiotemporal coverage, the TAP-based O3-mortality is taken as a cred-
ible standard here. The TAP-based national (provincial) O3-mortality is the
sum of all gridded O3-mortalities over the whole China (this province). The
CNEMC-based provincial O3-mortality is calculated by using the provincial
population data and the O3 concentration averaged over all CNEMC sites in
this province; the CNEMC-based national O3-mortality is the sum of all
CNEMC-based provincial O3-mortalities.

As shown in Fig. 4(a), the national O3-mortality based on CNEMC O3

concentrations is quite close to that based on TAP O3 concentrations for
each year; the CNEMC (TAP) national annual O3-mortality averaged during
2014–2019 is calculated to be 179.2 thousand (95%CI: 125.2–226.5 thou-
sand) (180.1 thousand, 95%CI: 126.36–228.7 thousand). Although esti-
mating the national O3-mortality using CNEMC site O3 concentrations is
practicable, large bias exists in estimating provincial O3-mortalities. Com-
pared with TAP-based provincial O3-mortalities, CNEMC-based O3-
mortalities are overestimated in coastal provinces with the largest positive
deviation of +1.3 thousand in Guangdong, but underestimated in most
provinces located in central China with the largest negative deviation of
−1.4 thousand in Anhui (Fig. 4(b) and Table 2).

We also conduct comparisons with national annual O3-mortality based
on chemical transport model taken from previous literature. Dang and
Liao (2019), who applied GEOS-Chem model to investigate O3-related
health impacts, exhibited higher O3-mortality than TAP-based O3-
mortality (Fig. 4(a)). The national O3-mortality averaged over 2013–2017
is estimated to be 209.2 thousand and 176.2 thousand (95%CI:
111.8–204.0 thousand) for GEOS-Chem and TAP, respectively. The differ-
ences arise from O3 concentration estimates and relative risk estimates.
The summer O3 concentrations simulated by GEOS-Chem are vastly
Table 2
Provincial-level O3-mortality averaged during 2014–2019 derived from CNEMC vs.
TAP O3 concentrations.

Province CNEMC
(thousand, 95%CI)

TAP
(thousand, 95%CI)

MBa

(thousand)
NMBb

(%)

Beijing BJ 3.56 (2.46, 4.42) 3.43 (2.42, 4.34) +0.12 +3.6
Tianjin TJ 2.21 (1.53, 2.75) 2.35 (1.65, 2.97) −0.14 −5.9
Hebei HeB 11.87 (8.35, 14.98) 11.74 (8.27, 14.83) +0.13 +1.1
Shanxi SX 5.06 (3.55, 6.35) 5.15 (3.62, 6.52) −0.09 −1.7
Neimenggu IM 3.19 (2.25, 4.09) 3.11 (2.18, 3.96) +0.08 +2.7
Liaoning LN 5.93 (4.19, 7.60) 5.74 (4.02, 7.29) +0.19 +3.3
Jilin JL 3.2 (2.23, 4.09) 3.06 (2.13, 3.91) +0.14 +4.5
Heilongjiang HLJ 2.53 (1.76, 3.29) 3.04 (2.11, 3.91) −0.51 −16.7
Shanghai SH 4.22 (2.98, 5.31) 3.94 (2.78, 4.98) +0.28 +7.2
Jiangsu JS 13.79 (9.67, 17.26) 13.11 (9.25, 16.56) +0.68 +5.2
Zhejiang ZJ 8.25 (5.71, 10.34) 7.64 (5.36, 9.71) +0.61 +8.0
Anhui AH 7.31 (5.14, 9.23) 8.73 (6.14, 11.04) −1.42 −16.3
Fujian FJ 4.34 (3.01, 5.50) 4.13 (2.88, 5.28) +0.21 +5.2
Jiangxi JX 4.79 (3.29, 6.03) 5.07 (3.54, 6.48) −0.28 −5.5
Shandong SD 17.95 (12.7, 22.57) 17.41 (12.32, 21.93) +0.54 +3.1
Henan HeN 15.4 (10.81, 19.31) 15.52 (10.96, 19.58) −0.12 −0.7
Hubei HuB 7.76 (5.40, 9.81) 7.97 (5.59, 10.12) −0.21 −2.7
Hunan HuN 7.3 (5.06, 9.27) 7.72 (5.39, 9.86) −0.42 −5.5
Guangdong GD 14.99 (10.49, 19.03) 13.69 (9.57, 17.43) +1.30 +9.5
Guangxi GX 4.68 (3.24, 5.98) 4.51 (3.13, 5.79) +0.16 +3.6
Hainan HaiN 0.6 (0.41, 0.77) 0.74 (0.51, 0.95) −0.14 −19.1
Chongqing CQ 2.1 (1.41, 2.63) 2.79 (1.94, 3.58) −0.69 −24.6
Sichuan SC 8.57 (5.93, 10.92) 9.22 (6.43, 11.78) −0.65 −7.1
Guizhou GZ 2.49 (1.70, 3.18) 2.84 (1.96, 3.65) −0.34 −12.1
Yunnan YN 4.47 (3.09, 5.71) 4.44 (3.08, 5.69) +0.04 +0.8
Xizang XZ 0.46 (0.32, 0.59) 0.36 (0.25, 0.47) +0.09 +25.4
Shaanxi SaX 4.48 (3.13, 5.70) 4.73 (3.31, 6.02) −0.25 −5.3
Gansu GS 3.67 (2.57, 4.64) 3.4 (2.38, 4.33) +0.26 +7.7
Qinghai QH 0.77 (0.54, 0.97) 0.74 (0.52, 0.94) +0.03 +4.2
Ningxia NX 0.96 (0.68, 1.22) 0.95 (0.67, 1.2) +0.02 +1.8
Xinjiang XJ 2.34 (1.62, 2.98) 2.86 (2.00, 3.64) −0.52 −18.2

a MB (mean bias) = CNEMC− TAP.
b NMB (normalized mean bias) = (CNEMC− TAP)/TAP × 100%.
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overestimated with NMB of +35.8 %; the relative risk estimate in Dang
and Liao (2019) uses warm-season 1-h daily maximumO3 (MDA1 O3) con-
centration and corresponding threshold concentration as well as β value
which were derived from Jerrett et al. (2009), rather than annual mean
MDA8 O3 concentration used in this study which refers to Turner et al.
(2016).

3.2. Effects of individual factors on ozone-related mortality rises during
2013–2019

We investigate the cause for O3-mortality rises during 2013–2019 by
quantifying the respective contribution of each factor, i.e., baseline mortal-
ity rate (BMR), population (Pop), age structure (AgeStru), and O3 concen-
tration (Conc). Fig. 5(c) shows yearly national O3-mortality during
2013–2019 in normal-condition experiment and four sensitivity experi-
ments. When all factors vary from 2013 to 2019, the national O3-
mortality exhibits an increasing trend of +14.1 thousand yr−1 (95 % CI:
10.2–17.4 thousand yr−1); the results from four sensitivity experiments
show that the national O3-mortality varies at a rate of +12.7 thousand
yr−1 (95 % CI: 9.2–15.6 thousand yr−1), +5.8 thousand yr−1 (95 % CI:
4.0–7.4 thousand yr−1), +1.0 thousand yr−1 (95 % CI: 0.7–1.2 thousand
yr−1), −5.4 thousand yr−1 (95 % CI: −6.9 to −3.7 thousand yr−1),
owing to changes in Conc alone, AgeStru alone, Pop alone, BMR alone, re-
spectively. The deterioration of O3 air quality, shown as significant increase
in O3 concentrations (Fig. 2(a2)), is regarded as the leading factor which
contributes 90.1 % of national O3-mortality rise during 2013–2019. The
spatial distribution of leading factor which most influences O3-mortality
trend over China (Fig. 5(d)) also shows that O3 concentration variation
dominates O3-mortality trend over most regions of China (84.2 % of
China's territorial area excluding regions without population).

As shown in Fig. 5(a), the proportion of the elderly over 65 years old in
total population (adults above 30) has increased from 16.0 % in 2013 to
19.3 % in 2019. The change in age structure, which specifically means
the aggravation of population aging here, is the second most important fac-
tor which leads to O3-mortality rise. Compared with the change in age
structure, national population growth plays a minor role in O3-mortality
rise; the increase of 11.4 % in national population results in a national
O3-mortality trend of +1.0 thousand yr−1 (95 % CI: 0.7–1.2 thousand
yr−1). Opposite to above three factors, the decreased baseline mortality
rate (Fig. 5(b)) owing to improvedmedical conditions brings about positive
health impacts and leads to a negative O3-mortality trend of−5.4 thousand
yr−1 (95 % CI: −6.9 to−3.7 thousand yr−1).

3.3. Effects of individual factors on ozone-related mortality rises from 2019 to
2030 under SSPs

Future changes in annual O3-mortality from 2019 to 2030 under three
SSP scenarios are projected in Fig. 6. SSPs combine pathways of socio-
economic development with targets to achieve a certain level of climate
mitigation. SSP1-2.6 represents the sustainability pathway which leads to
improvements in both air quality and climate. SSP2-4.5 represents the
medium part of the range of future forcing pathways, and is the updated
version of the RCP4.5 scenario in CMIP5. SSP5-8.5 represents the high-
fossil-fuel-development pathway which produces anthropogenic radiative
forcing of 8.5 W m−2 in 2100.

As shown in Fig. 6(d), O3-mortality rises are predicted for all three sce-
narios; the national O3-mortality is projected to increase by 50.4 thousand
(95 % CI: 37.8–63.0 thousand) in SSP1-2.6, 87.4 thousand (95 % CI:
65.5–109.2 thousand) in SSP2-4.5, and 103.7 thousand (95 % CI:
77.8–129.6 thousand) in SSP5-8.5, respectively. Four underlying causes,
i.e., BMR, Pop, AgeStru, and Conc, make distinct contributions to future
O3-mortality rises. Among the four factors, age structure change contributes
most to O3-mortality rises. From 2019 to 2030, the proportion of the young
and middle-aged below 50 years old in total population (for adults above
30) will decline from 48.5 % in 2019 to 40.7 % in 2030 while that of the
elderly over 70 years old will increase from 11.6 % in 2019 to 17.8 % in
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2030 (Fig. 6(a)). This change in age structure, i.e., population aging, will re-
sult in significant O3-mortality rises of 137.9–160.5 thousand among three
scenarios. By contrast, population growth of 74.1 million (Fig. 6(a)) has a
slight effect; the O3-mortality will increase by only 6.7–7.8 thousand
owing to the change in population size alone. Due to improving medical
conditions, the BMR in 2030 for the young and middle-aged below
70 years old will change little (relative to year 2019) but that for the elderly
above 70 will decrease a lot (−22.6 deaths/10 thousand, Fig. 6(b)), which
will bring about beneficial health outcomes and lead to O3-mortality
declines of 85.9–99.9 thousand. Fig. 6(c) exhibits future changes in O3

concentrations in 2030 relative to 2019 under three SSP scenarios, which
are obtained from four individual CMIP6 models. The multi-model
ensemble mean MDA8 O3 concentration will change by −8.1 μg m−3 in
SSP1-2.6,+2.4 μgm−3 in SSP2-4.5, and+4.6 μgm−3 in SSP5-8.5, respec-
tively. The radically different changes in O3 concentrations will cause
different O3-mortality changes, ranging from −8.3 thousand (95 % CI:
−6.2 to −10.4 thousand) in SSP1-2.6 to +35.3 thousand (95 % CI:
26.5–44.2 thousand) in SSP5-8.5.

During the past seven years (2013–2019), rapid O3 concentration in-
crease (+2.5 μgm−3 yr−1 at the national level) has been the primary factor
which leads to O3-mortality rises. However, O3 concentrations are
projected to increase at a lower rate (+0.4 μg m−3 yr−1 in SSP5-8.5) or
even decrease (−0.7 μg m−3 yr−1 in SSP1-2.6) in the coming decade
(2019–2030). In fact, a latest research has reported that summertime sur-
face O3 over eastern China decreased by 5.5 ppbv in 2020 compared to
the 2019 level, representing an unprecedented ozone reduction since
2013 (Yin et al., 2021). Therefore, persistent population aging will take
place of the deterioration of O3 air quality and become the leading factor
8

causing future O3-mortality rises in the coming decade, also suggesting an
urgent need to take more stringent (than currently planned) emission re-
duction measures to offset the adverse effects caused by population aging
in the near future.

4. Conclusions and discussion

Based on gridded O3 concentration provided by a newly developed da-
tabase named TAP and generated by a data-fusion algorithm that combines
in situ observations, satellite remote sensing measurements andmodel sim-
ulations, this study examines the spatiotemporal characteristics of O3-
related health impacts in China during 2013–2019 and quantifies the
relative contributions of four underlying driving factors (population size,
population age structure, mortality rate for respiratory disease, and O3 con-
centration) to the changes in premature respiratory mortalities attributable
to long-termO3 exposure (O3-mortality) in China. By using griddedO3 con-
centration projected by CMIP6models, we also predict future (2019–2030)
changes in O3-mortality under different SSP scenarios and distinguish the
respective contribution of each factor.

Four ozone-health-related metrics, i.e., AVGMDA8, 4MDA8, NDGT70,
and SOMO10 all exhibit the maximum values over North China Plain. In-
creasing trends of fourmetrics from2013 to 2019 are observed across almost
the whole China; the maximum values of seven-year trends are also located
over North China Plain for all four metrics. The O3-mortality is used to
more intuitively exhibit the health impacts of O3 exposure. The national an-
nual O3-mortality is 176.3 thousand (95 % CI: 123.5–224.0 thousand)
averaged during 2013–2019 with an increasing trend of 14.1 thousand
yr−1 (95 % CI: 10.2–17.4 thousand yr−1); the elderly over 65 years old
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contribute 90.8 % and 93.8 % of the total O3-mortality and its increasing
trend, respectively. Top five provinces with O3-mortality trends over 1.0
thousand yr−1 are Henan, Shandong, Hebei, Anhui, and Guangdong.

We also conduct comparisons of national (provincial) O3-mortality
based on TAP vs. CNEMC O3 concentrations. The national O3-mortality
based on CNEMC site O3 concentrations is quite close to that based on
TAP grid O3 concentrations for each year. However, compared with TAP-
based provincial O3-mortalities, CNEMC-based O3-mortalities are
overestimated in coastal provinces with the largest positive deviation of
+1.3 thousand in Guangdong, but underestimated in most provinces lo-
cated in central Chinawith the largest negative deviation of−1.4 thousand
in Anhui.

Sensitivity experiments conducted during 2013–2019 show that the
change in O3 concentration alone, population age structure alone, popula-
tion size alone, mortality rate for respiratory disease alone leads to national
O3-mortality trend of +12.7 thousand yr−1 (95 % CI: 9.2–15.6 thousand
yr−1), +5.8 thousand yr−1 (95 % CI: 4.0–7.4 thousand yr−1), +1.0 thou-
sand yr−1 (95%CI: 0.7–1.2 thousand yr−1),−5.4 thousand yr−1 (95%CI:
−6.9 to−3.7 thousand yr−1), respectively. The significant increase in O3

concentration is regarded as the leading factor, which contributes 90.1% of
9

national O3-mortality rise (+14.1 thousand yr−1 (95%CI: 10.2–17.4 thou-
sand yr−1)) during 2013–2019.

Future changes in O3-mortality are also examined from 2019 to 2030.
The national O3-mortality is projected to increase by 50.4 thousand
(95 % CI: 37.8–63.0 thousand) in SSP1-2.6, 87.4 thousand (95 % CI:
65.5–109.2 thousand) in SSP2-4.5, and 103.7 thousand (95 % CI:
77.8–129.6 thousand) in SSP5-8.5, respectively. Among four underlying
factors, age structure change contributes most to O3-mortality rises. The
proportion of the elderly over 70 years old in total population (for adults
above 30)will increase from 11.6% in 2019 to 17.8% in 2030. This change
in age structure, i.e., population aging, will result in significant O3-
mortality rises of 137.9–160.5 thousand. It is noted that rapidO3 concentra-
tion increase of+2.5 μgm−3 yr−1 at the national level is the primary factor
for 2013–2019O3-mortality rises. However, from2019 to 2030, O3 concen-
trations are projected to increase at a lower rate (+0.4 μg m−3 yr−1 in
SSP5-8.5) or even decrease (−0.7 μg m−3 yr−1 in SSP1-2.6). For the com-
ing decade, population aging, instead of O3 concentration increase, will be-
come the leading cause of future O3-mortality rises.

There are some limitations in our manuscript, which could be improved
in future studies. CMIP6 projections are designed before 2016 (Eyring et al.,
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2016). Therefore, all future scenarios did not take Coronavirus Disease
2019 (COVID-19) effect into account. A recent study modified emissions
scenario projections to account for the effects of COVID-19 (Lamboll
et al., 2021). The updated emission projection can be used to predict future
ozone level and associated mortalities in future studies. In addition, we
mainly focus on the ozone-related mortality at the national level in this
study. But the observations have shown different changes in ozone concen-
trations in urban/suburban (e.g., increase) and rural (e.g., decrease) areas
due to emission-control measures implemented by the government (Liu
and Wang, 2020; Wang et al., 2022; Zhang et al., 2022). The different
changing patterns of ozone concentrations, including human migration
from the countryside to urban cities, will cause significantly different re-
sults for ozone-related disease burdens in urban/suburban and rural areas
in recent decades (Chen et al., 2018; Malashock et al., 2022). In order to
quantitatively analyze the urban/suburban and rural health impacts attrib-
utable to ozone exposure and the relative contributions of four underlying
driving factors (i.e., population size, population age structure, mortality
rate for respiratory disease, and O3 concentration), a finer resolution of
gridded ozone database (e.g., 1 km) should be developed and used in future
studies. All the results about the ozone-related mortalities in urban/subur-
ban and rural areas and the major driving factor will be detailedly dis-
cussed, which may be helpful to make future environmental and public
health policies.
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