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Abstract. With the explosive growth of atmospheric data,
machine learning models have achieved great success in
air pollution forecasting because of their higher computa-
tional efficiency than the traditional chemical transport mod-
els. However, in previous studies, new prediction algorithms
have only been tested at stations or in a small region; a large-
scale air quality forecasting model remains lacking to date.
Huge dimensionality also means that redundant input data
may lead to increased complexity and therefore the over-
fitting of machine learning models. Feature selection is a
key topic in machine learning development, but it has not
yet been explored in atmosphere-related applications. In this
work, a regional feature selection-based machine learning
(RFSML) system was developed, which is capable of pre-
dicting air quality in the short term with high accuracy at the
national scale. Ensemble-Shapley additive global importance
analysis is combined with the RFSML system to extract sig-
nificant regional features and eliminate redundant variables
at an affordable computational expense. The significance of
the regional features is also explained physically. Compared
with a standard machine learning system fed with relative
features, the RFSML system driven by the selected key fea-
tures results in superior interpretability, less training time,
and more accurate predictions. This study also provides in-
sights into the difference in interpretability among machine
learning models (i.e., random forest, gradient boosting, and
multi-layer perceptron models).

1 Introduction

With ongoing economic development and modern industrial-
ization, the subsequent air pollution poses serious threats to
resident health (Liu and Diamond, 2005; Li et al., 2014). Af-
ter tobacco and high blood pressure, air pollution has ranked
third in risk factors for death and disability in China over the
past few decades (Murray et al., 2020). The primary air pol-
lutants in China are particulate matter (PM), sulfur dioxide
(SO2), carbon monoxide (CO), nitrogen oxides (NOx) and
ozone (O3) (Song et al., 2017b). PM2.5 or respirable PM in
air with an aerodynamic diameter below 2.5 µm is the pri-
mary air pollutant, and it has attracted considerable atten-
tion from researchers (Zhai et al., 2019). Exposure to either
long-term or short-term PM2.5 is related to respiratory symp-
toms, lung disease, cardiovascular disease, premature death,
and other adverse health effects (Pui et al., 2014; Di et al.,
2019). Burnett et al. (2018) and Song et al. (2017a) reported
that PM2.5 pollution in winter, particularly in northern China,
is severe. It accounted for 15.5 % (1.7 million) of all deaths
in China in 2015, despite an improvement in air quality since
2013. In recent studies, the global exposure mortality model
has estimated that 140 200 premature deaths from 2015 to
2019 can be attributed to long-term exposure to PM2.5 (Hao
et al., 2021). An accurate air quality forecast (e.g., forecast-
ing PM2.5) is therefore valuable to policy makers and health
professionals for epidemiological control (Xue et al., 2019).
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In addition, it can provide an early warning for residents, par-
ticularly for children, the elderly, and people with respiratory
or cardiovascular problems (Hu et al., 2017).

The development of an air pollution forecasting model is
possible, as atmospheric chemistry and physical rules have
been explored and are now understood in depth (Sun and
Li, 2020b). In addition, our ever-increasing computational
power can support the complex and heavy computational
tasks required for this type of model (Reichstein et al., 2019).
Deterministic models, such as chemical transport models
(CTMs), and data-driven methods are commonly employed
in forecasting (Cobourn, 2010; Xu et al., 2021). In several
studies, air pollution forecasting has been performed us-
ing mainstream air quality CTMs, such as the Weather Re-
search and Forecasting model with Chemistry (Grell et al.,
2005; Zhou et al., 2017), Community Multiscale Air Quality
model (Liu et al., 2018), and GEOS-Chem (Bey et al., 2001;
Jeong and Park, 2018). These CTMs can reproduce real at-
mospheric situations (Hutzell and Luecken, 2008; Shtein et
al., 2020); however, they exhibit several shortcomings. One
of the most difficult setbacks is the high uncertainty in emis-
sion inventories (Huang et al., 2021), which is a great chal-
lenge given the variety of contributing sources, complexity
of the spatial–temporal profiles, and lack of reliable in situ
measurements (M. Li et al., 2017). Additionally, an idealis-
tic deterministic model requires a delicate and thorough un-
derstanding of physical and chemical processes in the atmo-
sphere (Sun and Li, 2020a) and an enormous computational
capacity to resolve fine-scale variabilities. Therefore, CTMs
alone have failed to meet the requirements for an effective air
quality early warning system.

In contrast to CTMs, data-driven methods that do not re-
quire a profound knowledge of the complex composition or
structure of the atmosphere are also widely utilized in at-
mospheric modeling (Ziomas et al., 1995; Xi et al., 2015).
Many of these methods have been employed for air pollution
forecasting, including multiple linear regression (Sawaragi
et al., 1979), nonlinear regression models such as princi-
pal component regression (Shishegaran et al., 2020), hid-
den Markov models (Sun et al., 2013), support vector ma-
chine (Abu Awad et al., 2017), and artificial neural networks
(Fernando et al., 2012). Of these methods, machine learning
models have gained the greatest popularity because of their
capacity to learn complex and nonlinear relationships by as-
similating “big” training datasets (Masih, 2019; Leufen et al.,
2021). Machine learning has brought great opportunities and
challenges to the geophysical research community (Yu and
Ma, 2021).

With the explosive growth of data in earth science, the su-
periority of machine learning for massive data applications
has become increasingly prominent (Reichstein et al., 2019).
The most representative example is to perform predictions
for a target site using a machine learning model trained via
a long-term series of in situ historical measurements. The
China Ministry of Environmental Protection (MEP) has es-

tablished many ground-based stations measuring the primary
pollutants since 2013 (Zhai et al., 2019). At present, the mon-
itoring network comprises more than 1500 field stations cov-
ering all of China, as can be seen in Fig. 1. The richness of
air quality observations from the monitoring network pro-
vides valuable training data and stimulates the development
of machine learning air quality forecasting in China (Xu et
al., 2021). Previous studies on air pollution forecasting in
China have utilized various machine learning models with
the ground-based MEP air quality dataset. For example, X. Li
et al. (2017) utilized a long short-term memory (LSTM) neu-
ral network extended model to predict PM2.5 concentrations
at a maximum forecast horizon of 24 h for air quality moni-
toring stations in Beijing, China. Wu et al. (2020) proposed a
composite prediction system based on an LSTM neural net-
work to predict daily PM2.5 /PM10 in Wuhan. Zhang et al.
(2020) established a hybrid model, integrating deep learning
with multi-task learning, to predict hourly PM2.5 concentra-
tions in three different districts of Lanzhou. Ke et al. (2021)
utilized four machine learning models to develop an air qual-
ity forecasting system that can automatically find the best
model and hyperparameter combination for the next 3 d air
quality forecast in seven megacities of China. These works
are highly valuable in exploring novel methods of air qual-
ity prediction relative to conventional CTMs. To the best of
our knowledge, the aforementioned studies on air pollution
forecasting solely focused on a few monitoring stations, typ-
ical cities, or small regions, while national-level air quality
predictions remain lacking. The challenges in national-level
forecasting include substantial temporal and spatial variances
(Song et al., 2017b) in air pollution and enormous computa-
tional power requirements.

The curse of dimensionality is a common obstruction in
modeling; i.e., an increasing amount of input data leads to
rapidly increasing complexity, and prediction algorithms are
susceptible to over-fitting (Rodriguez-Galiano et al., 2012).
Therefore, considerable research has focused on reducing
the dimensionality of input data by selecting only signifi-
cant variables and eliminating redundancy. The methods of
this research can be classified into three categories: the filter
method (e.g., a correlation matrix using the Pearson Correla-
tion), wrapper method (e.g., recursive feature elimination),
and embedded method (e.g., Lasso regularization) (Chan-
drashekar and Sahin, 2014). These methods can reduce the
adverse effects of irregular variables or noise while retaining
prediction performance (Guyon and Elisseeff, 2003). They
also save computing resources for model training. However,
in previous studies on air quality forecasting, filter methods
such as Pearson correlation coefficients or the maximal in-
formation coefficient (MIC) (Kinney and Atwal, 2014) were
commonly utilized for input selection. These input selection
methods can help improve the performance of machine learn-
ing models; however, they all have serious limitations. For
example, universal meteorological variables that highly cor-
relate with PM2.5 in a large region of China are difficult to
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find using Pearson correlation coefficients because they can
vary substantially both spatially and temporally (Zhai et al.,
2019). MIC is the most employed method for capturing linear
and nonlinear correlations between variable pairs (Chen et
al., 2016). However, it cannot consider relevance and redun-
dancy simultaneously (Sun et al., 2018). Furthermore, MIC
is computationally intensive (Cao et al., 2021).

Machine learning algorithms are often considered “black
box” models that learn the input–output relationship from
immense training samples (Casalicchio et al., 2019). Many
researchers have devoted enormous efforts to developing and
implementing tools to interpret machine learning models.
Among these tools, game-theoretic formulations of feature
significance are the most widely utilized because they can
capture the interactions among features (Shapley, 1952), and
they may be the only solution satisfying the four “favorable
and fair” axioms (Fryer et al., 2021). Several scholars have
conducted in-depth studies on distinguishing feature signifi-
cance based on the Shapley value (Shapley, 1952). For exam-
ple, Park and Park (2021) utilized the Shapley additive expla-
nation (SHAP) approach (Lundberg and Lee, 2017a) to inter-
pret multiple machine learning models and found that most
of the models have similar features. Golizadeh Akhlaghi et
al. (2021) successfully interpreted the feature contributions
of the guideless irregular dew-point cooler on the predicted
parameters based on SHAP. In addition to SHAP, which ex-
plains individual predictions, Covert et al. (2020) proposed a
novel method that can explain model behavior across the en-
tire dataset (global interpretability), called Shapley additive
global importance (SAGE). SHAP and SAGE both utilize
the Shapley value; however, compared with SHAP, SAGE
can simultaneously eliminate larger subsets of redundant fea-
tures (Covert et al., 2020). Additionally, SAGE extracts fea-
tures from the conditional distribution instead of the marginal
distribution because the latter may lead to breaking feature
dependencies and producing unlikely feature combinations
(Lundberg and Lee, 2017a). Furthermore, investigating the
feature importance based on model performance (Jothi et al.,
2021) has been verified as a meaningful and effective ap-
proach for interpreting data-driven models and is popular
in computer science (Altmann et al., 2010). However, this
method has rarely been applied to air quality forecasting us-
ing machine learning tools.

In the present study, the first version of a regional feature
selection-based machine learning system (RFSML v1.0) is
developed. The system can predict short-term air quality with
high accuracy in China. In this study, the RFSML system
predicts the primary air pollutant (PM2.5) concentration over
every target site from the China MEP air quality monitoring
network by learning its implicit trend from long-term series
records. This method can be extended to other airborne pollu-
tant predictions in future studies. SAGE analysis is adopted
to interpret valuable features and exclude redundant inputs
to avoid over-fitting the model during training. Because the
SAGE calculations are more time-consuming than the model

training, as explained in Sect. 3.1, they are not repeated for
every target site but are implemented in limited ensemble
sites that are randomly selected in a given region. China was
divided into five densely populated regions, according to the
air pollution patterns, which are consistent with the Clean Air
Action target regions released by the Chinese State Council,
as discussed in Sect. 2.2.3. The top three critical features in
the ensemble SAGE calculations were utilized as the input
features for the implicit trend model training for each site.
The robustness of the regional feature selection was tested
over three widely utilized machine learning models, i.e., ran-
dom forest (RF), gradient boosting (GB), and multi-layer
perceptron (MLP) models, and four forecasting horizons (6,
12, 18, and 24 h).

The remainder of the paper is organized as follows: the
composition of the data used in this study and the pre-
processing method are introduced in Sect. 2. Then, the three
machine learning models and their hyperparameter choices
utilized in this study are described. The principles of SAGE
and the details of the SAGE ranking-based regional feature
selection are described at the end of Sect. 2. In Sect. 3, the
computational costs of SAGE and machine learning model
training are detailed. Then, the results of feature selection in
each region are presented and analyzed. The prediction per-
formance of RFSML is evaluated and compared with that of
the standard machine learning process. Finally, the conclu-
sions and future prospects are provided in Sect. 4.

2 Model, data, and methods

The components of the RFSML method that are used to fore-
cast PM2.5 concentrations are described in the following sec-
tions.

2.1 Model domain and data

The RFSML system forecasts air pollution levels in the vicin-
ity of a monitoring station. This forecasting uses machine
learning by examining the variability in the available station
datasets. The monitoring network consisted of 1588 stations,
for data collected in 2019, at the locations displayed in Fig. 1.
Because the station network is dense, pollution-level fore-
casting can be performed for nearly any location in eastern
China.

The input data for machine learning consisted of hourly
averaged air pollutant measurements (e.g., PM2.5, CO, SO2,
and NO2) from the Chinese MEP monitoring network, mete-
orological reanalysis data from ERA5-Land (Muñoz Sabater
et al., 2021), atmospheric composition data from the Coper-
nicus Atmosphere Monitoring Service (CAMS) reanalysis
(Inness et al., 2019) provided by the European Centre for
Medium-Range Weather Forecasts (ECMWF), and emission
data from the Multi-resolution Emission Inventory for China
(MEIC) inventory, with time factors applied at an hourly res-
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Figure 1. Locations of environmental monitoring stations in the study area in 2019 (blue pentagons). Red rectangles represent the five
primary megacity clusters in China.

olution. The input data are summarized in Table 1. The vari-
ables in the datasets are correlated with and may drive the
PM2.5 concentration and are therefore useful predictors.

Data from 2018 and 2019 were used in the experiments.
The first 15 690 h (from 1 January 2018 to 15 October 2019)
was used for model training and cross-validation, and the ac-
tual tests were performed using the remaining 1824 h of data
from 15 October to 30 December 2019. Our RFSML system
can of course operate in a rolling way; additional forecasts
in a less polluted period, April 2020, are performed with the
models similarly trained using the recent 2-year data.

2.1.1 Air pollutant observations

The observed air pollutant concentrations at the stations were
used as inputs (NO2, SO2, and CO) and target variables
(PM2.5) in the model training. The available time series of
PM10 observations was missing many values and was there-
fore excluded from the model. Additionally, O3 observations
were excluded because these data exhibit a diurnal cycle that
substantially differs from the PM2.5 target concentrations.

Missing data occurred for each of the studied pollutants
because of equipment failure, incorrect sensor readings, and
improper operation. For the PM2.5 time series, approximately
14.6 % of the observations were missing on average, as il-
lustrated in Fig. 2a. However, an uninterrupted time series
is necessary for model training and rolling forecasting. In
studies such as Qin et al. (2019) and J. Ma et al. (2019),
it was shown that the observations from surrounding mon-
itoring stations can be utilized to insert suitable values for

missing data through imputation. Data imputation tools, such
as cubic interpolation, have gained popularity for enhancing
monotone data (Fritsch and Carlson, 1980).

In this study, the K-nearest neighbor (KNN) classification
method (Zhang, 2012) and cubic imputation were combined
to create an uninterrupted time series. The KNN algorithm
is illustrated as Algorithm S1 in the Supplement. The KNN
algorithm was implemented using the following steps:

1. Monitoring stations with over 20 % missing data were
excluded from the training and prediction because such
large amounts of missing data are not believed to be
filled with sufficient accuracy.

2. For each station, the number of monitoring stations
within a radius of 0.8◦ was calculated (following the
empirical choices suggested in Jin et al., 2019). If fewer
than three surrounding stations were available, the sta-
tion was excluded from the training and forecasting.
If three or four surrounding stations were found, these
were all selected, while four stations were selected
randomly if more than four surrounding stations were
found.

3. For each target station, a geographic inverse distance
weighting technique (Bartier and Keller, 1996) was
used to estimate the missing values using the observed
values from the surrounding stations.

After KNN interpolation, the amount of missing data in
the PM2.5 time series was reduced to approximately 4.5 %,
as illustrated in Fig. 2b.
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Table 1. Summary of empirical input variables.

Type Number Spatial resolution Temporal resolution Source

Ground observation 4 Monitoring station Hourly Monitoring station
Atmospheric composition 4 0.75◦× 0.75◦ 3-Hourly CAMS global reanalysis
Meteorology 8 0.1◦× 0.1◦ Hourly ERA5-Land hourly data
MEIC 9 0.25◦× 0.25◦ Monthly MEIC v1.3
Time factor 2 Hourly

Figure 2. Missing fraction of (a) original and (b) KNN-interpolated PM2.5 data. Dots and triangles denote the locations of air quality
monitoring stations, and dot colors represent the missing data rate of each monitoring station. Black triangles indicate monitoring stations
with 20 % missing data or over 15 % missing data after KNN interpolation that were excluded from the model.

Because there were cases where nearby stations and the
target station simultaneously exhibited missing data, some
instances of missing values remained after KNN interpola-
tion. Therefore, cubic imputation (Kincaid et al., 2009) was
employed to insert values for the remaining missing data.
Outliers generated by the cubic imputation were replaced
with the minimum or maximum of the original series. A total
of 1263 monitoring stations exhibited no missing data after
applying interpolation. Both the mean and standard deviation
of the homogenized time series were similar to those of the
original data, as illustrated in Fig. S1 in the Supplement.

2.1.2 Air pollutant forecast product and meteorological
variables

The CAMS reanalysis (Inness et al., 2019) provides three-
dimensional simulations of the atmospheric composition ob-
tained by combining a global atmospheric chemistry model
and observations. Therefore, it is expected to surpass pure
model-based prediction accuracy. Selected concentrations of
trace gases and aerosols from the CAMS reanalysis were in-
puts for the PM2.5 predictor. The PM2.5 simulations in this
dataset were also used as a benchmark for the RFSML pre-
diction.

We obtained the 3-hourly reanalysis data of four air pol-
lutant concentrations (pm2p5, no2, so2, and co), which are
reanalysis data (pm2p5, no2, so2, and co) of four ground ob-

servations mentioned above, in China from 2018 to 2019.
The 3 h temporal resolution of the CAMS reanalysis data is
firstly interpolated into 1 h resolution by cubic imputation.
Then continuous time series of features at the monitoring sta-
tions are extracted from the interpolated 1 h data at a resolu-
tion of 0.75◦× 0.75◦ using the nearest mapping.

Meteorological variables, as illustrated in Table 2,
were obtained from ERA5-Land data (Copernicus Climate
Change Service (C3S), 2017) at a horizontal resolution of
0.1◦× 0.1◦ and an hourly temporal resolution for 2018 and
2019. The data are available from the Climate Data Store
via https://doi.org/10.24381/cds.e2161bac (Muñoz Sabater,
2021). The time series of meteorological variables used for
the machine learning are extracted from this product using
the nearest mapping method.

2.1.3 Emission inventory

MEIC, the most popular anthropogenic emission inventory
in China (M. Li et al., 2017), has been validated to pro-
vide consistent aerosol precursor loading for satellite ob-
servations (Fan et al., 2018). It has been widely employed
to quantify the air pollution in multi-atmosphere chemical
models. The latest inventory of 2017 from MEIC version
1.3 was obtained via http://meicmodel.org/index.html (last
access: October 2021) for use in this study. Based on the
emission source height distribution, 24 h distribution, and
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Table 2. Summary of meteorological variables obtained from
ERA5-land dataset.

Meteorology Long name Unit

u10 10 m u component of wind ms−1

v10 10 m v component of wind ms−1

d2m 2 m dew-point temperature K
t2m 2 m temperature K
skt Skin temperature K
sp Surface pressure Pa
tp Total precipitation m
str Surface net thermal radiation Jm−2

Table 3. Summary of emission inventory variables.

MEIC Full name

E_CO CO
E_ECI Elemental carbon PM2.5 nuclei mode
E_HCHO Formaldehyde
E_NH3 NH3
E_NO2 NO2
E_ORGJ Organic PM2.5 accumulation mode
E_PM25J Unspeciated primary PM2.5 accumulation mode
E_PM_10 Unspeciated primary PM10
E_SO2 SO2

version 2 of the Regional Acid Deposition Model (Zimmer-
mann and Poppe, 1996) chemical reaction scheme, the origi-
nal monthly emission data were processed into hourly emis-
sion rates. Considering their correlation with PM2.5, nine
pollutant species were selected as machine learning predictor
inputs, as displayed in Table 3.

2.2 The RFSML system

2.2.1 System framework

Figure 3 displays the framework of the proposed RFSML and
a standard machine learning system. Note that a standard ma-
chine learning system refers to a machine learning system
without any feature selection. Standard machine learning is
conducted as follows. First, all observations and datasets re-
lated to PM2.5 are collected, and then the missing values are
interpolated into the original dataset. Next, the appropriate
machine learning model is selected, and the continuous data
time series is reformed into the required input structure. The
model is then trained repeatedly until the appropriate hyper-
parameters are obtained, and finally, predictions are made
with the trained model. Given an input xn that consists of
individual features (x1,x2, . . .,xn), a predictor F is utilized
in a supervised learning task to predict the target variable y.
A time series regression, such as rolling forecast, can be ex-

pressed as follows:

ŷt+h = F
(
x
t−tp+1
1 , . . .,xt1,x

t−tp+1
2 , . . .,

xt2, . . ., . . .,x
t−tp+1
n , . . .,xtn

)
, (1)

where, at any instant t , the input vector storing n individual
features in the previous tp h is utilized to forecast the target
PM2.5 concentration ŷ with a horizon of h h. The forecast
predictor F represents the machine learning model (RF, GB,
or MLP) trained using the historical data. Details on the se-
lection of tp and h are provided in Sect. 2.2.2.

As mentioned before, some features are residual, and the
feature subset can provide sufficient predictive power and
less noise for F . Thus, the proposed RFSML utilized SAGE
to obtain the optimal feature subsets. Considering the com-
putational efficiency, we divided the total national air quality
monitoring stations into six types, each of which randomly
selected the air quality monitoring stations for feature selec-
tion. Given any feature subset xs = {x1,x2, . . .,xs}, the ma-
chine learning models can be described as follows:

ŷt+h = F
(
x
t−tp+1
1 , . . .,xt1,x

t−tp+1
2 , . . .,

xt2, . . ., . . .,x
t−tp+1
s , . . .,xts

)
. (2)

2.2.2 Machine learning models

Different machine learning algorithms have been used to
forecast PM2.5 because they can provide promising ap-
proaches to handle complex nonlinear relationships. Each
algorithm exhibits advantages and drawbacks. Of the ma-
chine learning models, typical boosting (e.g., GB) and bag-
ging (e.g., RF) algorithms are widely applied in regression
analysis using a set of decision trees. Additionally, artifi-
cial neural network models (e.g., MLP) that are composed of
many processing elements can successfully perform nonlin-
ear mapping. Thus, to evaluate the robustness of the feature
selection, all of the prediction algorithms mentioned above
were tested in the present study.

The original data in Fig. 3 were converted into a 27-
dimensional matrix (n= 27) after preprocessing. On the ba-
sis of the auto-correlation and partial auto-correlation results,
a time step tp = 9 h was selected for the forecast. The predic-
tion horizon h spans from 1 to 24 h. Then, the matrix was
converted into supervised learning based on tp and h. The
model hyperparameters (Table 4) were designed for each pre-
dicting algorithm using 10-fold cross-validation and then fit
to each predicting algorithm. Note that “none” for the max
depth of RF means “nodes are expanded until all leaves are
pure or until all leaves contain less than min_samples_split
samples” in Scikit learn (Pedregosa et al., 2011).

2.2.3 SAGE-based regional feature selection

Many methods have been utilized to investigate the signif-
icance of features for machine learning models. The game-
theoretic method based on the Shapley value is the most
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Figure 3. RFSML versus standard machine learning system framework.

Table 4. Summary of model’s hyperparameters.

GB RF MLP

Hyperparameter Final value Hyperparameter Final value Hyperparameter Final value

N estimators 100 N estimators 100 Neurons in hidden layer 100
Max depth 3 Max depth None Activation ReLU
Loss Mean square error Loss Mean squared error Loss Mean squared error
Learning rate 0.1 Min sample leaf 1 Solver Adam

widely adopted. Unlike SHAP, a well-known method for ex-
plaining individual predictions, SAGE explains model be-
havior across the entire dataset. Global model interpretabil-
ity helps us understand the distribution of target outcomes
based on the features (Molnar, 2020), which is useful for
finding the typical features of each region. There are two out-
standing added values of SAGE (Covert et al., 2020). The
first is its ability to remove large subsets of features because
only removing individual features gives too little significance
to features with sufficient proxies, such as in permutation
tests. The other advantage of SAGE is its ability to select
notable features from their conditional distribution instead of
their marginal distribution, reducing unlikely feature combi-
nations.

Given the function WF , which represents the predictive
power of a machine learning model F with subsets of fea-
tures xs ⊆ xn, the SAGE algorithm can be written as follows:

WF (S)=−E
[
`(E[ŷ|xs],y)

]
(3)

φi(WF )=

1
n

∑
S⊆N\{i}

(
n− 1
|S|

)−1[
WF (S ∪ {i})−WF (S)

]
, (4)

where ` means the loss function that measures the root mean
squared error (RMSE) or mean absolute error (MAE); ŷ is
the prediction from F ; y represents the target variable; sets S
and N store {1,2,3, . . ., s} and {1,2,3, . . .,n}, respectively;
i is each single variable where i ∈N ; and n is the length

of N . WF increases with a decline in the loss function for
any subset S ⊆N (note the minus sign in front of the loss
function in Eq. 3). Equation (4) represents the Shapley value
that is the weighted average of the incremental changes from
adding i to subsets S ⊆N\{i} (Covert et al., 2020). The more
a feature contributes to the prediction from F , the larger the
positive values φi(WF ) would become.

The computational costs of the SAGE analysis over ma-
chine learning models including RF, GB, and MLP are pre-
sented in Sect. 3.1. They are much more expensive than the
model training and therefore cannot be repeated over all sites.
Meanwhile, air pollution in nearby monitoring stations has
inherent similarities because its forcing factors, i.e., mete-
orological and emission variables, are closely related in a
given region. As in Zhai et al. (2019), all the available sites
were partitioned into six categories in the present study: the
North China Plain (NCP; 34–41◦ N, 113–119◦ E), Yangtze
River Delta (YRD; 30–33◦ N, 119–122◦ E), Pearl River Delta
(PRD; 21.5–24◦ N, 112–115.5◦ E), Sichuan Basin (SCB;
28.5–31.5◦ N, 103.5–107◦ E) Fenwei Plain (FWP; 33–35◦ N,
106.25–111.25◦ E; 35–37◦ N, 108.75–113.75◦ E), and the re-
mainder of China. The locations of these regions can be
found in Fig. 1. Therefore, we propose the regional future
selection in which SAGE is only implemented in limited en-
semble sites that are randomly selected in a given region, and
the selected features would be used for model training and
prediction at each regional site.

The framework of regional feature selection, as illustrated
by Algorithm 1, is as follows. A total of 15 ensemble sta-
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Algorithm 1 Regional feature selection.

Input: data {sited}Dd=1, region z, machine learning model F ,
predicting horizon h, SAGE algorithm

1: Initialize h= [6,12,18,24], ensemble size = 15
2: for j = 1 to len(z) do
3: Find all sites (Dr ) in zj from {sited}Dd=1
4: Select ensemble sites from Dr randomly
5: for e = 1 to ensemble size do
6: for f = 1 to len(F) do
7: for g = 1 to len(h) do
8: Employ SAGE algorithm
9: Rank importance of input (A) for each h, F and z

10: end for
11: Re-rank A’s importance (B) for each F and z
12: end for
13: end for
14: Re-rank B’s importance (C) for each z
15: Take the three most important variables as features for each z
16: end for

tions are randomly selected in each of the six regions. Tak-
ing NCP as an example, the significance of the features of
the ensemble monitoring stations with four prediction hori-
zons (6, 12, 18, and 24 h) and three prediction algorithms
is analyzed using SAGE algorithms. Then, the outcomes of
the ensemble-SAGE model are ranked, as displayed in the
heatmap in Fig. 4. The heatmap highlights the significant fea-
tures. PM2.5, CO, and v10 typically exhibit higher ranks in
the 15 random monitoring stations and four prediction hori-
zons. The heatmaps of the ensemble-SAGE analyses of the
other five regions can be found in Figs. S2–S18 in the Supple-
ment. The feature significance in different regions is ranked
by the sum of the SAGE values in the ensemble monitoring
stations and four prediction horizons, as displayed in Fig. 5.
The feature selection based on the ensemble-SAGE analy-
sis concerning Fig. 5 is explained in Sect. 3.2. Note that we
also tried random ensemble numbers 10 and 20 in NCP key
feature extraction using the MLP model at several prediction
horizons. The choice of 15 is shown to give the most robust
result with a minimum computation cost, and it is therefore
used for all regional feature selections in this study.

3 Results and discussion

3.1 Computational complexity analysis

Instead of performing feature selection for every forecast
model independently, our proposed ensemble-SAGE analy-
sis successfully interprets the important regional features for
PM2.5 prediction with substantially less computation com-
plexity. In addition, the regional feature selection improves
the forecast accuracy and saves significant computing power
for the machine learning model training by excluding re-
dundant inputs and speeding up the model convergence. In

this study, all computations concerning the SAGE-based fea-
ture selection and machine learning model training were con-
ducted on several nodes configured with 4×16-core 2.1 GHz
Intel Xeon E5-2620 v4 CPUs and with 64 GB of memory.

The computational cost of SAGE varies significantly, with
average times of 7353, 3891, and 3325 s when using GB,
RF, and MLP, respectively. The maximum time costs reach
61 209, 65 127, and 23 931 s with GB, RF, and MLP, respec-
tively. Thus, using SAGE for each PM2.5 forecasting model
with different air quality monitoring stations, prediction hori-
zons, and machine learning models is time-consuming. As
illustrated in Table 5, the time cost for the three machine
learning model training sessions is greatly reduced using the
inputs from SAGE-based regional feature selection.

3.2 Regional feature selection analysis

The results of the SAGE-based regional feature selection
concerning the three machine learning models, six parti-
tioned regions, and four forecasting horizons are discussed in
this section. Taking the NCP as an example, critical features
that govern the performance of PM2.5 forecasting vary across
stations and prediction horizons, as illustrated in Fig. 4. How-
ever, PM2.5, CO, and v10 (features) play an overwhelmingly
positive role in MLP-based PM2.5 forecasting for most se-
lected stations and predicting horizons. This result indicates
that these three features suit all of the stations in the NCP.
SAGE analysis heatmaps for other regions or using different
prediction algorithms can be found in Figs. S2–S18. Consis-
tently critical features can be easily extracted from the five
megacity cluster regions using our selection method. How-
ever, they are difficult to extract from the remaining area of
China. This area does not have universal key features because
its stations are spread widely across China and therefore ex-
hibit substantially different air quality patterns. An improved
station clustering method can help solve this issue and will
be explored in our future research.

To extract the important robust features that fit all stations
in a given region, we summed and ranked the SAGE anal-
ysis values in the ensemble monitoring stations and predic-
tion horizons. The ensemble-SAGE ranking is displayed in
Fig. 5. There are consistent, crucial features in the six clus-
ter regions, regardless of the prediction algorithm or horizon.
PM2.5 is the most critical feature for predicting its trend at a
particular region and with a particular prediction algorithm.
In addition to PM2.5, two variables from CAMS reanalysis,
co and pm2p5, are critical across all regions. This result sug-
gests that the forecast of these variables from CAMS reanaly-
sis can help capture the varying trend in the machine learning
models, even though the predictions are different from the ac-
tual values. By contrast, time factors (week and hour infor-
mation) are the least important features for short-term pre-
diction. This result is consistent with that of Hu et al. (2014),
where no distinct weekday/weekend difference was observed
for PM2.5 in the NCP and PRD.
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Figure 4. Heatmap of all empirical features with 15 random monitoring stations in NCP and four prediction horizons. The circle, diamond,
square, and triangle represent the 6, 12, 18, and 24 h prediction horizons, respectively. The heatmap is based on the SAGE analysis ranking
of features training by MLP. The warmer the row color, the more significant the corresponding feature.

Table 5. Summary of mean and maximum time costs of machine learning model training.

Time (s) Mean_standardML Mean_RFSML Max_standardML Max_RFSML

GB 91.024 12.57 93.952 13.751
RF 291.466 36.854 319.75 42.907
MLP 5.592 3.553 18.316 12.237

Considering their generality and robustness, we selected
the top three critical features for each region, as illustrated
in Table 6. Note that the ensemble SAGE analysis selected
different key features in different regions. In the NCP, the
simulation of CO from CAMS reanalysis, which is a repre-
sentative air pollutant, includes valuable information other
than CO observations. This result implies that local precur-
sor emissions are a major contributor to PM pollution (Guo
et al., 2016), and non-point source pollution may be more fa-
vorable for PM2.5 forecasting. Additionally, v10, which rep-
resents regional transmission, is a critical feature for PM2.5
forecasting in the NCP, PRD, and YRD. This result indicates
that regional transmission plays a vital role in these three re-
gions (Chen et al., 2017; Liu et al., 2017). This finding is
consistent with findings reported in recent studies. Zhang et
al. (2018) found that the anomalously high, normalized, and
near-surface meridional wind is typically the primary cause
of the severe haze in the NCP using a chemical transport

model. Huang et al. (2018) illustrated that regional transport
accounts for over half of PM2.5 under the polluted northerly
airflow in winter. T. Ma et al. (2019) discovered that the re-
gional PM2.5 pollution in winter is primarily from northern
and eastern China using a trajectory model. However, v10
is less significant in the SCB. This result is because of the
blocking effect of the plateau terrain on the northeasterly
winds (Shu et al., 2021); hence, winds are frequently static,
particularly in winter and autumn (Liao et al., 2017). By con-
trast, d2m and tp are crucial features for hourly PM2.5 fore-
casting in the SCB. This finding may be because polluted
weather patterns are typically associated with higher relative
humidity in that area, and tp, representing rainfall, is vital to
eliminate air pollution in a basin (Zhan et al., 2019).
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Figure 5. Heatmap of empirical features for six regions with three machine learning models. Each column represents the rearrangement of
the sum of 15 monitoring stations and four prediction horizons. Black vertical lines are used to distinguish each region. The warmer the row
color, the more critical the corresponding feature.

Table 6. Summary of selected features.

Region NCP PRD SCB YRD FWP REST

Feature
PM2.5 PM2.5 PM2.5 PM2.5 PM2.5 PM2.5
v10 v10 d2m v10 d2m co
co pm2p5 tp pm2p5 co pm2p5

3.3 Performance of RFSML

This section presents the forecasting skill of the proposed
RFSML system driven by regional features selected by the
ensemble-SAGE-based model. The results are also compared
with those of a standard machine learning forecasting model
and fourth-generation ECMWF global reanalysis data. The
latter is referred to as the benchmark of chemical transport
models. To highlight the improvements by using the selected
key features, the regional performance which represents the
average of the forecasting performance in all sites of the
given region is introduced.

Figure 6 displays the times series of the simulated PM2.5
for the three forecasting systems (MLP model and at a pre-
dicting horizon of 12 h) versus observational data. Each sub-
plot represents a random monitoring station in the corre-
sponding five megacity cluster regions. The subplots illus-

trate the typical behaviors observed for the other monitoring
stations, machine learning models, and prediction horizons.
Both the standard machine learning and RFSML models out-
perform the simple CTM. This result indicates that the ma-
chine learning algorithms are superior in air pollution pre-
diction (Pérez et al., 2000). Additionally, PM2.5 predictions
with selected key features perform better than the standard
machine learning forecast that uses all related features. The
GB and RF machine learning models used in this study also
show steady improvements.

Both the RFSML and standard machine learning predic-
tions typically underestimate high PM2.5 concentrations as
the prediction horizon increases. This underestimation can
be ascribed to three primary possible reasons. First, the cor-
rect features are difficult to obtain, and unsuitable features
can bring significant bias and noise into the prediction algo-
rithms. Second, the construction of our prediction algorithm
network may be insufficiently complex or deep to determine
the actual relationship between features and the PM2.5. How-
ever, considering the purpose of a real-time forecast, the time
to forecast, which is closely related to the complexity of the
prediction algorithm network, cannot be too long. Third, con-
sidering our test period only included late autumn and early
winter of 2019, the training and validation periods only in-
cluded autumn and winter of 2018, which is too short for
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Figure 6. Time series of test time in five megacity cluster regions. The black dots and red pentacles represent original and interpolated PM2.5
respectively. The solid lines in light gray, light blue, and dark violet represent prediction of CAMS reanalysis, the standard machine learning
system and RFSML respectively. Panels (a)–(e) represent a random site in NCP, YRD, PRD, SCB, and FWP respectively. Note that those
are predictions 12 h in advance, which are in parallel with CAMS reanalysis’s predicting horizon, and the machine learning model used here
is MLP.

a prediction algorithm to learn the complex relationship for
hourly PM2.5 forecasting. Seasonal training and validation
may obtain satisfactory outcomes for a particular seasonal
forecast (Bai et al., 2019).

Figure 7 displays the spatial distribution of the RMSEs
(columns a and b) and MAEs (columns c and d) of the PM2.5
forecast for all stations either using the standard machine
learning or RFSML system at a forecasting horizon of 12 h.
The RMSEs and MAEs significantly decreased when using
the selected key features for all three machine learning mod-
els, particularly in regions with severe PM2.5 pollution, e.g.,
the NCP and FWP. This consistent improvement also occurs
when the forecast horizon changes to 6, 18, and 24 h, and the
results are illustrated in Figs. S19–S21 in the Supplement.

A modified Taylor diagram (Taylor, 2005) is plotted in
Fig. 8 to show the overall outcome. RFSML forecasts with
selected features typically exhibit a lower RMSE and higher
R than the standard forecasts. The best improvement is ob-

tained when the deep learning (MLP) model is used, while
forecasts with the selected new features in the RF model are
not significantly improved and even not as good as with fore-
casts that use all features.

This result can be explained by the characteristics of the
two types of prediction algorithms. RF increases the diversity
of the trees through the bootstrapped aggregation of several
regression trees (bagging) (Brokamp et al., 2017). It has the
advantage of maintaining low bias because tree-based meth-
ods with bagging can reduce the variance of an estimated pre-
diction function. Some uninformative features can be ignored
through bagging; i.e., RF reduces the high variance by grow-
ing the individual trees to a deep level and then making their
predictions, typically through averaging (Liaw and Wiener,
2002). By contrast, MLP, which implements the global ap-
proximation strategy (Osowski et al., 2004), may face prob-
lems of multicollinearity and noise caused by uninformative
features.
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Figure 7. Spatial distribution of RMSEs and MAEs at a prediction horizon of 12 h. Panels (a) and (c) are results of standard machine learning
system, while panels (b) and (d) are results of RFSML. The cooler the color tone, the lower the RMSEs and MAEs and thus the better the
prediction performance.

The RMSE increases and R declines with an increase in
the prediction horizons across all regions and machine learn-
ing models in general. The average coefficient of determi-
nation (R2) of the 24 h forecast (the maximum horizon set
in this study) based on the three machine learning models
increases from 0.47 to 0.65 in the NCP, from 0.41 to 0.52
in the PRD, from 0.62 to 0.67 in the SCB, from 0.44 to
0.57 in the YRD, and from 0.62 to 0.65 in the FWP when
using the ensemble-SAGE analysis-based feature selection.
This results indicate that the RFSML system can provide the
operational PM2.5 forecast with a maximum horizon of 24 h.

To further confirm the predictive capability in a rolling
way, we make forecasts over a less polluted month, April
2020. Specific results can be found in Table S1 in the Sup-
plement. Steady improvement of predicting performance is
still achieved by RFSML. Time series, as given in Fig. S22
in the Supplement, show similar results as the main text that
RFSML has better predictive ability than standard machine
learning. As is illustrated in Figs. S23–S24 in the Supple-
ment, RFSML has both lower RMSE and MAE values than

standard machine learning, which implies the advantage of
RFSML.

4 Conclusions and future work

Machine learning models have been successfully utilized in
air quality forecasts worldwide because of their high compu-
tational efficiency and accuracy. However, substantial room
for improvement remains. In this study, we developed the
RFSML v1.0 system, which can predict national air quality
with high accuracy in real time in China.

In a standard machine learning system, all related fea-
tures are typically utilized in model training and predic-
tion. However, the high dimensionality and redundant input
data may lead to increased complexity and machine learn-
ing model over-fitting. To overcome this obstacle, we com-
bined an ensemble-SAGE analysis with our RFSML system.
This method extracts the key features in a given region at an
affordable extra cost, and the significance of these regional
selected features are explained physically. Compared with
the standard machine learning system that was fed with all
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Figure 8. A modified Taylor diagram that illustrates RMSE and correlation coefficient values in six regions. The black and red colors
represent forecasts with standard machine learning models and RFSML. Round, diamond, and fork shapes represent RF, MLP, and GB
respectively. The transparency of markers indicates the four prediction horizons, where the transparency increases as the forecast hours
increase.

relative features, the RFSML system driven by the selected
key features resulted in superior interpretability, less training
time, and more accurate predictions. Statistically, the average
RMSE and MAE of predictions were reduced from 24.74 and
16.54 µgm−3 to 21.54 and 13.7 µgm−3, respectively, with
RFSML. Additionally, R2 increased from 0.6 to 0.7, and the
average forecasting model training cost was reduced from
129.36 to 17.66 s. Among the three machine learning models
studied, the prediction performance of RFSML with MLP
exhibited the greatest increase, with R2 increasing from 0.55
to 0.72. By contrast, RF exhibited the least improvement,
with R2 increasing from 0.61 to 0.66. In addition, RF and
GB were more robust than MLP for certain underlying un-
informative features, while MLP was more susceptible to
over-fitting. Meanwhile, RFSML provides only predictions
over the air quality monitoring sites where historical data are
available for machine learning model training, instead of a
gridded forecast. A Bayesian-theory-based prediction fusion
is being explored now to extend the RFSML forecast avail-
able at single stations to a gridded one.

The six-region partition used here was empirical and not
based on science. Additionally, stations in a given region

may exhibit different air quality patterns, particularly in the
“remainder” region. Therefore, our ensemble-SAGE analy-
sis does not always select the representative feature, limiting
the machine model interpretability and prediction ability. A
more scientific station partition like spatial clustering would
be determined for future studies.

Based on the results of this study, the RFSML system can
accurately predict air quality in the short term at the national
scale; this renders it valuable for health professionals and
policy makers in terms of providing early warning to popu-
lation categories more susceptible to air pollution (e.g., chil-
dren, elderly, and people with respiratory or cardiovascular
issues) and reducing and regulating air pollution.

Code and data availability. The ground-based air quality moni-
toring observations are from the network established by the
China Ministry of Environmental Protection and accessible
via https://quotsoft.net/air/ (last access: June 2022). The mea-
surements used in this study also are archived on Zenodo
(https://doi.org/10.5281/zenodo.6551820, Fang, 2022). The RF-
SML algorithm is in the Python environment and is archived on
Zenodo (https://doi.org/10.5281/zenodo.6551850, , Fang, 2022).
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Altmann, A., Toloşi, L., Sander, O., and Lengauer,
T.: Permutation importance: a corrected feature im-
portance measure, Bioinformatics, 26, 1340–1347,
https://doi.org/10.1093/bioinformatics/btq134, 2010.

Bai, Y., Li, Y., Zeng, B., Li, C., and Zhang, J.: Hourly PM2.5 con-
centration forecast using stacked autoencoder model with em-
phasis on seasonality, J. Clean. Prod., 224, 739–750, 2019.

Bartier, P. M. and Keller, C.: Multivariate interpolation
to incorporate thematic surface data using inverse dis-
tance weighting (IDW), Comput. Geosci., 22, 795–799,
https://doi.org/10.1016/0098-3004(96)00021-0, 1996.

Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field,
B. D., Fiore, A. M., Li, Q., Liu, H. Y., Mickley, L.
J., and Schultz, M. G.: Global modeling of tropospheric
chemistry with assimilated meteorology: Model description
and evaluation, J. Geophys. Res.-Atmos., 106, 23073–23095,
https://doi.org/10.1029/2001JD000807, 2001.

Brokamp, C., Jandarov, R., Rao, M., LeMasters, G., and Ryan, P.:
Exposure assessment models for elemental components of par-
ticulate matter in an urban environment: A comparison of regres-

sion and random forest approaches, Atmos. Environ., 151, 1–11,
https://doi.org/10.1016/j.atmosenv.2016.11.066, 2017.

Burnett, R., Chen, H., Szyszkowicz, M., Fann, N., Hubbell, B.,
Pope, C. A., Apte, J. S., Brauer, M., Cohen, A., Weichenthal,
S., Coggins, J., Di, Q,. Brunekreef, B., Frostad, J., Lim, S. S.,
Kan, H., Walker, K. D., Thurston, G. D., Hayes, R. B., Lim,
C. C., Turner, M. C., Jerrett, M., Krewski, D., Gapstur, S. M.,
Diver, W. R., Ostro, B., Goldberg, D., Crouse, D. L., Martin, R.
V., Peters, P., Pinault, L., Tjepkema, M., van, Donkelaar. A., Vil-
leneuve, P. J., Miller, A. B., Yin, P., Zhou, M., Wang, L., Janssen,
NAH., Marra, M., Atkinson, R. W., Tsang, H., Quoc, Thach. T.,
Cannon, J. B., Allen, R. T., Hart, J. E., Laden, F., Cesaroni, G.,
Forastiere, F., Weinmayr, G., Jaensch, A., Nagel, G., Concin, H.,
and Spadaro, J. V.: Global estimates of mortality associated with
long-term exposure to outdoor fine particulate matter, P. Natl.
Acad. Sci. USA, 115, 9592–9597, 2018.

Cao, D., Chen, Y., Chen, J., Zhang, H., and Yuan, Z.:
An improved algorithm for the maximal information coeffi-
cient and its application, Roy. Soc. Open Sci., 8, 201424,
https://doi.org/10.1098/rsos.201424, 2021.

Casalicchio, G., Molnar, C., and Bischl, B.: Visualizing the
Feature Importance for Black Box Models, in: Machine
Learning and Knowledge Discovery in Databases, edited by:
Berlingerio, M., Bonchi, F., Gärtner, T., Hurley, N., and
Ifrim, G., Springer International Publishing, Cham, 655–670,
https://doi.org/10.1007/978-3-030-10925-7_40, 2019.

Chandrashekar, G. and Sahin, F.: A survey on feature
selection methods, Comput. Electr. Eng., 40, 16–28,
https://doi.org/10.1016/j.compeleceng.2013.11.024, 2014.

Chen, D., Liu, X., Lang, J., Zhou, Y., Wei, L., Wang,
X., and Guo, X.: Estimating the contribution of regional
transport to PM2.5 air pollution in a rural area on the
North China Plain, Sci. Total Environ., 583, 280–291,
https://doi.org/10.1016/j.scitotenv.2017.01.066, 2017.

Chen, Y., Zeng, Y., Luo, F., and Yuan, Z.: A new algorithm to opti-
mize maximal information coefficient, PloS one, 11, e0157567,
https://doi.org/10.1371/journal.pone.0157567, 2016.

Cobourn, W. G.: An enhanced PM2.5 air quality fore-
cast model based on nonlinear regression and back-
trajectory concentrations, Atmos. Environ., 44, 3015–3023,
https://doi.org/10.1016/j.atmosenv.2010.05.009, 2010.

Copernicus Climate Change Service (C3S): ERA5: Fifth generation
of ECMWF atmospheric reanalyses of the global climate. Coper-
nicus Climate Change Service Climate Data Store (CDS), https:
//cds.climate.copernicus.eu/cdsapp#!/home (last access: June
2022), 2017.

Covert, I., Lundberg, S. M., and Lee, S.-I.: Understanding
Global Feature Contributions With Additive Importance Mea-
sures, in: Advances in Neural Information Processing Sys-
tems, vol. 33, edited by: Larochelle, H., Ranzato, M., Had-
sell, R., Balcan, M. F., and Lin, H., Curran Associates,
Inc., 17212–17223, https://proceedings.neurips.cc/paper/2020/
file/c7bf0b7c1a86d5eb3be2c722cf2cf746-Paper.pdf (last access:
June 2022), 2020.

Di, Q., Amini, H., Shi, L., Kloog, I., Silvern, R., Kelly, J., Sabath,
M. B., Choirat, C., Koutrakis, P., Lyapustin, A., Wang, Y.,
Mickley, L. J., and Schwartz, J.: An ensemble-based model
of PM2.5 concentration across the contiguous United States

Geosci. Model Dev., 15, 7791–7807, 2022 https://doi.org/10.5194/gmd-15-7791-2022

https://doi.org/10.5194/gmd-15-7791-2022-supplement
https://doi.org/10.1016/j.envres.2017.08.039
https://doi.org/10.1093/bioinformatics/btq134
https://doi.org/10.1016/0098-3004(96)00021-0
https://doi.org/10.1029/2001JD000807
https://doi.org/10.1016/j.atmosenv.2016.11.066
https://doi.org/10.1098/rsos.201424
https://doi.org/10.1007/978-3-030-10925-7_40
https://doi.org/10.1016/j.compeleceng.2013.11.024
https://doi.org/10.1016/j.scitotenv.2017.01.066
https://doi.org/10.1371/journal.pone.0157567
https://doi.org/10.1016/j.atmosenv.2010.05.009
https://cds.climate.copernicus.eu/cdsapp#!/home
https://cds.climate.copernicus.eu/cdsapp#!/home
https://proceedings.neurips.cc/paper/2020/file/c7bf0b7c1a86d5eb3be2c722cf2cf746-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c7bf0b7c1a86d5eb3be2c722cf2cf746-Paper.pdf


L. Fang et al.: Development of RFSML for air pollution forecasting over China 7805

with high spatiotemporal resolution, Environ. Int., 130, 104909,
https://doi.org/10.1016/j.envint.2019.104909, 2019.

Fan, T., Liu, X., Ma, P.-L., Zhang, Q., Li, Z., Jiang, Y.,
Zhang, F., Zhao, C., Yang, X., Wu, F., and Wang, Y.: Emis-
sion or atmospheric processes? An attempt to attribute the
source of large bias of aerosols in eastern China simulated by
global climate models, Atmos. Chem. Phys., 18, 1395–1417,
https://doi.org/10.5194/acp-18-1395-2018, 2018.

Fang, L.: The ground observations for RFSML, Zenodo [data set
and code], https://doi.org/10.5281/zenodo.6551820, 2022.

Fernando, H., Mammarella, M., Grandoni, G., Fedele, P., Di Marco,
R., Dimitrova, R., and Hyde, P.: Forecasting PM10 in metropoli-
tan areas: Efficacy of neural networks, Environ. Pollut., 163, 62–
67, https://doi.org/10.1016/j.envpol.2011.12.018, 2012.

Fritsch, F. N. and Carlson, R. E.: Monotone piecewise cubic inter-
polation, SIAM J. Numer. Anal., 17, 238–246, 1980.

Fryer, D. V., Strümke, I., and Nguyen, H.: Shapley values for feature
selection: The good, the bad, and the axioms, arXiv [preprint],
https://doi.org/10.48550/arXiv.2102.10936, 22 February 2021.

Golizadeh Akhlaghi, Y., Aslansefat, K., Zhao, X., Sadati, S., Badiei,
A., Xiao, X., Shittu, S., Fan, Y., and Ma, X.: Hourly performance
forecast of a dew point cooler using explainable Artificial Intel-
ligence and evolutionary optimisations by 2050, Appl. Energ.,
281, 116062, https://doi.org/10.1016/j.apenergy.2020.116062,
2021.

Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G.,
Skamarock, W. C., and Eder, B.: Fully coupled “online” chem-
istry within the WRF model, Atmos. Environ., 39, 6957–6975,
https://doi.org/10.1016/j.atmosenv.2005.04.027, 2005.

Guo, J., He, J., Liu, H., Miao, Y., Liu, H., and Zhai, P.: Impact
of various emission control schemes on air quality using WRF-
Chem during APEC China 2014, Atmos. Environ., 140, 311–
319, https://doi.org/10.1016/j.atmosenv.2016.05.046, 2016.

Guyon, I. and Elisseeff, A.: An introduction to variable and feature
selection, J. Mach. Learn. Res., 3, 1157–1182, 2003.

Hao, X., Li, J., Wang, H., Liao, H., Yin, Z., Hu, J., Wei, Y., and
Dang, R.: Long-term health impact of PM2.5 under whole-year
COVID-19 lockdown in China, Environ. Pollut., 290, 118118,
https://doi.org/10.1016/j.envpol.2021.118118, 2021.

Hu, J., Wang, Y., Ying, Q., and Zhang, H.: Spatial and temporal
variability of PM2.5 and PM10 over the North China Plain and
the Yangtze River Delta, China, Atmos. Environ., 95, 598–609,
https://doi.org/10.1016/j.atmosenv.2014.07.019, 2014.

Hu, J., Li, X., Huang, L., Ying, Q., Zhang, Q., Zhao, B., Wang, S.,
and Zhang, H.: Ensemble prediction of air quality using the WR-
F/CMAQ model system for health effect studies in China, Atmos.
Chem. Phys., 17, 13103–13118, https://doi.org/10.5194/acp-17-
13103-2017, 2017.

Huang, L., Liu, S., Yang, Z., Xing, J., Zhang, J., Bian, J., Li, S.,
Sahu, S. K., Wang, S., and Liu, T.-Y.: Exploring deep learning
for air pollutant emission estimation, Geosci. Model Dev., 14,
4641–4654, https://doi.org/10.5194/gmd-14-4641-2021, 2021.

Huang, X.-F., Zou, B.-B., He, L.-Y., Hu, M., Prévôt, A. S. H., and
Zhang, Y.-H.: Exploration of PM2.5 sources on the regional scale
in the Pearl River Delta based on ME-2 modeling, Atmos. Chem.
Phys., 18, 11563–11580, https://doi.org/10.5194/acp-18-11563-
2018, 2018.

Hutzell, W. T. and Luecken, D. J.: Fate and trans-
port of emissions for several trace metals over the

United States, Sci. Total Environ., 396, 164–179,
https://doi.org/10.1016/j.scitotenv.2008.02.020, 2008.

Inness, A., Ades, M., Agustí-Panareda, A., Barré, J., Benedic-
tow, A., Blechschmidt, A.-M., Dominguez, J. J., Engelen, R.,
Eskes, H., Flemming, J., Huijnen, V., Jones, L., Kipling, Z.,
Massart, S., Parrington, M., Peuch, V.-H., Razinger, M., Remy,
S., Schulz, M., and Suttie, M.: The CAMS reanalysis of at-
mospheric composition, Atmos. Chem. Phys., 19, 3515–3556,
https://doi.org/10.5194/acp-19-3515-2019, 2019.

Jeong, J. I. and Park, R. J.: Efficacy of dust aerosol fore-
casts for East Asia using the adjoint of GEOS-Chem with
ground-based observations, Environ. Pollut., 234, 885–893,
https://doi.org/10.1016/j.envpol.2017.12.025, 2018.

Jin, J., Lin, H. X., Segers, A., Xie, Y., and Heemink, A.: Machine
learning for observation bias correction with application to dust
storm data assimilation, Atmos. Chem. Phys., 19, 10009–10026,
https://doi.org/10.5194/acp-19-10009-2019, 2019.

Jothi, N., Husain, W., and Rashid, N. A.: Predicting
generalized anxiety disorder among women using
Shapley value, J. Infect. Public Heal., 14, 103–108,
https://doi.org/10.1016/j.jiph.2020.02.042, 2021.

Ke, H., Gong, S., He, J., Zhang, L., Cui, B., Wang, Y.,
Mo, J., Zhou, Y., and Zhang, H.: Development and ap-
plication of an automated air quality forecasting system
based on machine learning, Sci. Total Environ., 806, 151204,
https://doi.org/10.1016/j.scitotenv.2021.151204, 2021.

Kincaid, D., Kincaid, D. R., and Cheney, E. W.: Numerical analy-
sis: mathematics of scientific computing, vol. 2, American Math-
ematical Soc., ISBN 978-0-8218-4788-6, 2009.

Kinney, J. B. and Atwal, G. S.: Equitability, mutual information, and
the maximal information coefficient, P. Natl. Acad. Sci. USA,
111, 3354–3359, 2014.

Leufen, L. H., Kleinert, F., and Schultz, M. G.: MLAir (v1.0) –
a tool to enable fast and flexible machine learning on
air data time series, Geosci. Model Dev., 14, 1553–1574,
https://doi.org/10.5194/gmd-14-1553-2021, 2021.

Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D.,
Zheng, B., Cui, H., Man, H., Zhang, Q., and He, K.: Anthro-
pogenic emission inventories in China: a review, Natl. Sci. Rev.,
4, 834–866, https://doi.org/10.1093/nsr/nwx150, 2017.

Li, X., Peng, L., Yao, X., Cui, S., Hu, Y., You, C.,
and Chi, T.: Long short-term memory neural network
for air pollutant concentration predictions: Method devel-
opment and evaluation, Environ. Pollut., 231, 997–1004,
https://doi.org/10.1016/j.envpol.2017.08.114, 2017.

Li, Z., Ma, Z., van der Kuijp, T. J., Yuan, Z., and Huang, L.: A
review of soil heavy metal pollution from mines in China: Pol-
lution and health risk assessment, Sci. Total Environ., 468–469,
843–853, https://doi.org/10.1016/j.scitotenv.2013.08.090, 2014.

Liao, T., Wang, S., Ai, J., Gui, K., Duan, B., Zhao, Q., Zhang, X.,
Jiang, W., and Sun, Y.: Heavy pollution episodes, transport path-
ways and potential sources of PM2.5 during the winter of 2013
in Chengdu (China), Sci. Total Environ., 584–585, 1056–1065,
https://doi.org/10.1016/j.scitotenv.2017.01.160, 2017.

Liaw, A. and Wiener, M.: Classification and regression by random-
Forest, R news, 2, 18–22, 2002.

Liu, H., He, J., Guo, J., Miao, Y., Yin, J., Wang, Y., Xu, H., Liu,
H., Yan, Y., Li, Y., and Zhai, P.: The blue skies in Beijing dur-
ing APEC 2014: A quantitative assessment of emission control

https://doi.org/10.5194/gmd-15-7791-2022 Geosci. Model Dev., 15, 7791–7807, 2022

https://doi.org/10.1016/j.envint.2019.104909
https://doi.org/10.5194/acp-18-1395-2018
https://doi.org/10.5281/zenodo.6551820
https://doi.org/10.1016/j.envpol.2011.12.018
https://doi.org/10.48550/arXiv.2102.10936
https://doi.org/10.1016/j.apenergy.2020.116062
https://doi.org/10.1016/j.atmosenv.2005.04.027
https://doi.org/10.1016/j.atmosenv.2016.05.046
https://doi.org/10.1016/j.envpol.2021.118118
https://doi.org/10.1016/j.atmosenv.2014.07.019
https://doi.org/10.5194/acp-17-13103-2017
https://doi.org/10.5194/acp-17-13103-2017
https://doi.org/10.5194/gmd-14-4641-2021
https://doi.org/10.5194/acp-18-11563-2018
https://doi.org/10.5194/acp-18-11563-2018
https://doi.org/10.1016/j.scitotenv.2008.02.020
https://doi.org/10.5194/acp-19-3515-2019
https://doi.org/10.1016/j.envpol.2017.12.025
https://doi.org/10.5194/acp-19-10009-2019
https://doi.org/10.1016/j.jiph.2020.02.042
https://doi.org/10.1016/j.scitotenv.2021.151204
https://doi.org/10.5194/gmd-14-1553-2021
https://doi.org/10.1093/nsr/nwx150
https://doi.org/10.1016/j.envpol.2017.08.114
https://doi.org/10.1016/j.scitotenv.2013.08.090
https://doi.org/10.1016/j.scitotenv.2017.01.160


7806 L. Fang et al.: Development of RFSML for air pollution forecasting over China

efficiency and meteorological influence, Atmos. Environ., 167,
235–244, https://doi.org/10.1016/j.atmosenv.2017.08.032, 2017.

Liu, J. and Diamond, J.: China’s environment in
a globalizing world, Nature, 435, 1179–1186,
https://doi.org/10.1038/4351179a, 2005.

Liu, T., Lau, A. K. H., Sandbrink, K., and Fung, J. C. H.: Time
Series Forecasting of Air Quality Based On Regional Numerical
Modeling in Hong Kong, J. Geophys. Res.-Atmos., 123, 4175–
4196, https://doi.org/10.1002/2017JD028052, 2018.

Lundberg, S. M. and Lee, S.-I.: A Unified Approach to In-
terpreting Model Predictions, http://papers.nips.cc/paper/
7062-a-unified-approach-to-interpreting-model-predictions.pdf
(last access: June 2022), 2017.

Ma, J., Ding, Y., Gan, V. J. L., Lin, C., and Wan, Z.: Spatiotempo-
ral Prediction of PM2.5 Concentrations at Different Time Gran-
ularities Using IDW-BLSTM, IEEE Access, 7, 107897–107907,
https://doi.org/10.1109/ACCESS.2019.2932445, 2019.

Ma, T., Duan, F., He, K., Qin, Y., Tong, D., Geng, G., Liu,
X., Li, H., Yang, S., Ye, S., Xu, B., Zhang, Q., and Ma,
Y.: Air pollution characteristics and their relationship with
emissions and meteorology in the Yangtze River Delta re-
gion during 2014–2016, J. Environ. Sci.-China, 83, 8–20,
https://doi.org/10.1016/j.jes.2019.02.031, 2019.

Masih, A.: Machine learning algorithms in air quality modeling,
Global Journal of Environmental Science and Management, 5,
515–534, 2019.

Molnar, C.: Interpretable Machine Learning, Lulu.com, 2020.
Muñoz Sabater, J.: ERA5-Land hourly data from 1950 to 1980,

Copernicus Climate Change Service (C3S) Climate Data Store
(CDS)[data set], https://doi.org/10.24381/cds.e2161bac, 2021.

Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C.,
Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harri-
gan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M.,
Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and
Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis
dataset for land applications, Earth Syst. Sci. Data, 13, 4349–
4383, https://doi.org/10.5194/essd-13-4349-2021, 2021.

Murray, C. J., Aravkin, A. Y., Zheng, P., Abbafati, C., Abbas, K. M.,
Abbasi-Kangevari, M., Abd-Allah, F., Abdelalim, A., Abdollahi,
M., Abdollahpour, I., and GBD 2019 Risk Factors Collaborators:
Global burden of 87 risk factors in 204 countries and territories,
1990–2019: a systematic analysis for the Global Burden of Dis-
ease Study 2019, Lancet, 396, 1223–1249, 2020.

Osowski, S., Siwek, K., and Markiewicz, T.: MLP and SVM
networks-a comparative study, in: Proceedings of the 6th
Nordic Signal Processing Symposium, 2004, NORSIG 2004, Es-
poo, Finland, 11–11 June 2004, 37–40, ISBN 951-22-7065-X
IEEE,2004.

Park, H. and Park, D. Y.: Comparative analysis on pre-
dictability of natural ventilation rate based on ma-
chine learning algorithms, Build. Environ., 195, 107744,
https://doi.org/10.1016/j.buildenv.2021.107744, 2021.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,
V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Per-
rot, M., and Duchesnay, E.: Scikit-learn: Machine Learning in
Python, J. Mach. Learn. Res., 12, 2825–2830, 2011.

Pérez, P., Trier, A., and Reyes, J.: Prediction of PM2.5
concentrations several hours in advance using neural net-

works in Santiago, Chile, Atmos. Environ., 34, 1189–1196,
https://doi.org/10.1016/S1352-2310(99)00316-7, 2000.

Pui, D. Y., Chen, S.-C., and Zuo, Z.: PM2.5 in
China: Measurements, sources, visibility and health
effects, and mitigation, Particuology, 13, 1–26,
https://doi.org/10.1016/j.partic.2013.11.001, 2014.

Qin, Z., Cen, C., and Guo, X.: Prediction of Air Quality
Based on KNN-LSTM, J. Phys. Conf. Ser., 1237, 042030,
https://doi.org/10.1088/1742-6596/1237/4/042030, 2019.

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler,
J., Carvalhais, N., and Prabhat: Deep learning and process un-
derstanding for data-driven Earth system science, Nature, 566,
195–204, 2019.

Rodriguez-Galiano, V., Chica-Olmo, M., Abarca-Hernandez, F.,
Atkinson, P., and Jeganathan, C.: Random Forest classification
of Mediterranean land cover using multi-seasonal imagery and
multi-seasonal texture, Remote Sens. Environ., 121, 93–107,
https://doi.org/10.1016/j.rse.2011.12.003, 2012.

Sawaragi, Y., Soeda, T., Tamura, H., Yoshimura, T., Ohe, S.,
Chujo, Y., and Ishihara, H.: Statistical prediction of air pollu-
tion levels using non-physical models, Automatica, 15, 441–451,
https://doi.org/10.1016/0005-1098(79)90018-9, 1979.

Shapley, L. S.: A Value for N-Person Games, RAND Corporation,
Santa Monica, CA, https://doi.org/10.7249/P0295, 1952.

Shishegaran, A., Saeedi, M., Kumar, A., and Ghiasinejad,
H.: Prediction of air quality in Tehran by developing the
nonlinear ensemble model, J. Clean. Prod., 259, 120825,
https://doi.org/10.1016/j.jclepro.2020.120825, 2020.

Shtein, A., Kloog, I., Schwartz, J., Silibello, C., Michelozzi,
P., Gariazzo, C., Viegi, G., Forastiere, F., Karnieli, A., and
Just, A.: Estimating Daily PM2.5 and PM10 over Italy Us-
ing an Ensemble Model, Environ. Sci. Technol., 54, 120–128,
https://doi.org/10.1021/acs.est.9b04279, 2020.

Shu, Z., Liu, Y., Zhao, T., Xia, J., Wang, C., Cao, L., Wang, H.,
Zhang, L., Zheng, Y., Shen, L., Luo, L., and Li, Y.: Elevated 3D
structures of PM2.5 and impact of complex terrain-forcing circu-
lations on heavy haze pollution over Sichuan Basin, China, At-
mos. Chem. Phys., 21, 9253–9268, https://doi.org/10.5194/acp-
21-9253-2021, 2021.

Song, C., He, J., Wu, L., Jin, T., Chen, X., Li, R., Ren,
P., Zhang, L., and Mao, H.: Health burden attributable to
ambient PM2.5 in China, Environ. Pollut., 223, 575–586,
https://doi.org/10.1016/j.envpol.2017.01.060, 2017a.

Song, C., Wu, L., Xie, Y., He, J., Chen, X., Wang, T.,
Lin, Y., Jin, T., Wang, A., Liu, Y., Dai, Q., Liu, B.,
Wang, Y., and Mao, H.: Air pollution in China: Status
and spatiotemporal variations, Environ. Pollut., 227, 334–347,
https://doi.org/10.1016/j.envpol.2017.04.075, 2017b.

Sun, G., Li, J., Dai, J., Song, Z., and Lang, F.: Fea-
ture selection for IoT based on maximal information
coefficient, Future Gener. Comp. Sy., 89, 606–616,
https://doi.org/10.1016/j.future.2018.05.060, 2018.

Sun, W. and Li, Z.: Hourly PM2.5 concentration forecasting based
on feature extraction and stacking-driven ensemble model for the
winter of the Beijing-Tianjin-Hebei area, Atmos. Pollut. Res., 11,
110–121, https://doi.org/10.1016/j.apr.2020.02.022, 2020a.

Sun, W. and Li, Z.: Hourly PM2.5 concentration fore-
casting based on mode decomposition-recombination
technique and ensemble learning approach in severe

Geosci. Model Dev., 15, 7791–7807, 2022 https://doi.org/10.5194/gmd-15-7791-2022

https://doi.org/10.1016/j.atmosenv.2017.08.032
https://doi.org/10.1038/4351179a
https://doi.org/10.1002/2017JD028052
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
https://doi.org/10.1109/ACCESS.2019.2932445
https://doi.org/10.1016/j.jes.2019.02.031
https://doi.org/10.24381/cds.e2161bac
https://doi.org/10.5194/essd-13-4349-2021
https://doi.org/10.1016/j.buildenv.2021.107744
https://doi.org/10.1016/S1352-2310(99)00316-7
https://doi.org/10.1016/j.partic.2013.11.001
https://doi.org/10.1088/1742-6596/1237/4/042030
https://doi.org/10.1016/j.rse.2011.12.003
https://doi.org/10.1016/0005-1098(79)90018-9
https://doi.org/10.7249/P0295
https://doi.org/10.1016/j.jclepro.2020.120825
https://doi.org/10.1021/acs.est.9b04279
https://doi.org/10.5194/acp-21-9253-2021
https://doi.org/10.5194/acp-21-9253-2021
https://doi.org/10.1016/j.envpol.2017.01.060
https://doi.org/10.1016/j.envpol.2017.04.075
https://doi.org/10.1016/j.future.2018.05.060
https://doi.org/10.1016/j.apr.2020.02.022


L. Fang et al.: Development of RFSML for air pollution forecasting over China 7807

haze episodes of China, J. Clean. Prod., 263, 121442,
https://doi.org/10.1016/j.jclepro.2020.121442, 2020b.

Sun, W., Zhang, H., Palazoglu, A., Singh, A., Zhang, W., and
Liu, S.: Prediction of 24-hour-average PM2.5 concentrations us-
ing a hidden Markov model with different emission distribu-
tions in Northern California, Sci. Total Environ., 443, 93–103,
https://doi.org/10.1016/j.scitotenv.2012.10.070, 2013.

Taylor, K. E.: Taylor diagram primer, Work. Pap., 1–4,
https://www.atmos.albany.edu/daes/atmclasses/atm401/spring_
2016/ppts_pdfs/Taylor_diagram_primer.pdf (last access: Octo-
ber 2022), 2005.

Wu, X., Wang, Y., He, S., and Wu, Z.: PM2.5 / PM10 ratio
prediction based on a long short-term memory neural net-
work in Wuhan, China, Geosci. Model Dev., 13, 1499–1511,
https://doi.org/10.5194/gmd-13-1499-2020, 2020.

Xi, X., Wei, Z., Xiaoguang, R., Yijie, W., Xinxin, B., Wen-
jun, Y., and Jin, D.: A comprehensive evaluation of air
pollution prediction improvement by a machine learning
method, in: 2015 IEEE International Conference on Ser-
vice Operations And Logistics, And Informatics (SOLI), Yas-
mine Hammamet, Tunisia, 15–17 November 2015, 176–181,
https://doi.org/10.1109/SOLI.2015.7367615, 2015.

Xu, M., Jin, J., Wang, G., Segers, A., Deng, T., and Lin,
H. X.: Machine learning based bias correction for numeri-
cal chemical transport models, Atmos. Environ., 248, 118022,
https://doi.org/10.1016/j.atmosenv.2020.118022, 2021.

Xue, T., Zhu, T., Zheng, Y., Liu, J., Li, X., and Zhang,
Q.: Change in the number of PM2.5-attributed deaths in
China from 2000 to 2010: Comparison between estima-
tions from census-based epidemiology and pre-established
exposure-response functions, Environ. Int., 129, 430–437,
https://doi.org/10.1016/j.envint.2019.05.067, 2019.

Yu, S. and Ma, J.: Deep Learning for Geophysics: Current
and Future Trends, Rev. Geophys., 59, e2021RG000742,
https://doi.org/10.1029/2021RG000742, 2021.

Zhai, S., Jacob, D. J., Wang, X., Shen, L., Li, K., Zhang, Y., Gui, K.,
Zhao, T., and Liao, H.: Fine particulate matter (PM2.5) trends in
China, 2013–2018: separating contributions from anthropogenic
emissions and meteorology, Atmos. Chem. Phys., 19, 11031–
11041, https://doi.org/10.5194/acp-19-11031-2019, 2019.

Zhan, C., Xie, M., Fang, D., Wang, T., Wu, Z., Lu, H., Li,
M., Chen, P., Zhuang, B., Li, S., Zhang, Z., Gao, D., Ren,
J., and Zhao, M.: Synoptic weather patterns and their im-
pacts on regional particle pollution in the city cluster of
the Sichuan Basin, China, Atmos. Environ., 208, 34–47,
https://doi.org/10.1016/j.atmosenv.2019.03.033, 2019.

Zhang, Q., Ma, Q., Zhao, B., Liu, X., Wang, Y., Jia, B., and Zhang,
X.: Winter haze over North China Plain from 2009 to 2016: Influ-
ence of emission and meteorology, Environ. Pollut., 242, 1308–
1318, https://doi.org/10.1016/j.envpol.2018.08.019, 2018.

Zhang, Q., Wu, S., Wang, X., Sun, B., and Liu, H.: A PM2.5 con-
centration prediction model based on multi-task deep learning
for intensive air quality monitoring stations, J. Clean. Prod., 275,
122722, https://doi.org/10.1016/j.jclepro.2020.122722, 2020.

Zhang, S.: Nearest neighbor selection for iteratively
kNN imputation, J. Syst. Software, 85, 2541–2552,
https://doi.org/10.1016/j.jss.2012.05.073, 2012.

Zhou, G., Xu, J., Xie, Y., Chang, L., Gao, W., Gu, Y., and Zhou, J.:
Numerical air quality forecasting over eastern China: An opera-
tional application of WRF-Chem, Atmos. Environ., 153, 94–108,
https://doi.org/10.1016/j.atmosenv.2017.01.020, 2017.

Zimmermann, J. and Poppe, D.: A supplement for the RADM2
chemical mechanism: The photooxidation of isoprene, At-
mos. Environ., 30, 1255–1269, https://doi.org/10.1016/1352-
2310(95)00417-3, 1996.

Ziomas, I. C., Melas, D., Zerefos, C. S., Bais, A. F., and
Paliatsos, A. G.: Forecasting peak pollutant levels from
meteorological variables, Atmos. Environ., 29, 3703–3711,
https://doi.org/10.1016/1352-2310(95)00131-H, 1995.

https://doi.org/10.5194/gmd-15-7791-2022 Geosci. Model Dev., 15, 7791–7807, 2022

https://doi.org/10.1016/j.jclepro.2020.121442
https://doi.org/10.1016/j.scitotenv.2012.10.070
https://www.atmos.albany.edu/daes/atmclasses/atm401/spring_2016/ppts_pdfs/Taylor_diagram_primer.pdf
https://www.atmos.albany.edu/daes/atmclasses/atm401/spring_2016/ppts_pdfs/Taylor_diagram_primer.pdf
https://doi.org/10.5194/gmd-13-1499-2020
https://doi.org/10.1109/SOLI.2015.7367615
https://doi.org/10.1016/j.atmosenv.2020.118022
https://doi.org/10.1016/j.envint.2019.05.067
https://doi.org/10.1029/2021RG000742
https://doi.org/10.5194/acp-19-11031-2019
https://doi.org/10.1016/j.atmosenv.2019.03.033
https://doi.org/10.1016/j.envpol.2018.08.019
https://doi.org/10.1016/j.jclepro.2020.122722
https://doi.org/10.1016/j.jss.2012.05.073
https://doi.org/10.1016/j.atmosenv.2017.01.020
https://doi.org/10.1016/1352-2310(95)00417-3
https://doi.org/10.1016/1352-2310(95)00417-3
https://doi.org/10.1016/1352-2310(95)00131-H

	Abstract
	Introduction
	Model, data, and methods
	Model domain and data
	Air pollutant observations
	Air pollutant forecast product and meteorological variables
	Emission inventory

	The RFSML system 
	System framework
	Machine learning models
	SAGE-based regional feature selection


	Results and discussion
	Computational complexity analysis
	Regional feature selection analysis
	Performance of RFSML

	Conclusions and future work
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Financial support
	Review statement
	References

