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ABSTRACT

The Yangtze River Delta (YRD) urban agglomeration is one of the most developed regions in China. During recent
decades, this region has experienced severe regional haze and photochemical smog pollution problems. In this
study, we used a source-oriented chemical transport model to quantitatively estimate the effects of inter-city trans-
port on fine particulate matter (PM,s) and ozone (Os) among the 41 cities in the YRD urban agglomeration during
the EXPLORE-YRD (EXPeriment on the eLucidation of the atmospheric Oxidation capacity and aerosol foRmation,
and their Effects in the Yangtze River Delta) campaign (May 17 to June 17, 2018). The results show that inter-
city transport is very significant in the YRD region. On average, the emissions from the local city, the other YRD cities,
and the regions outside of the YRD contribute 25.3%, 49.9%, and 24.8% to the PM, s, respectively, and they contribute
33.7%, 46.8%, and 19.5% of the non-background Os, respectively. On PM, s or O3 pollution days, the transport contri-
bution from the non-local YRD cities becomes much more important, while the local emissions and the transport
from non-YRD emissions become less important. The results also suggest that the cities within a distance of
184 km and 94 km contribute 60% of the PM, 5 and O3, respectively. Therefore, we recommend that regional coop-
erative control programs in the YRD consider emission controls over cities within these ranges. The range for pri-
mary PM, 5 (92 km) is very different from that for secondary PM, 5 (515 km) Cooperative emission controls of
SO, and NO, on a much larger regional scale are required to reduce the secondary PM, s in the YRD.
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1. Introduction

The Yangtze River Delta (YRD) region is one of the most populous
and most developed urban agglomerations in China. With rapid eco-
nomic development and fast industrialization and urbanization, the air
pollution in this region has become very serious, and it is characterized
by high concentrations of fine particulate matter (PM, 5) and ozone (O3)
(Huetal, 2014; Ma et al,, 2019; Tie et al., 2006; Wang et al., 2001; Wang
etal, 2014b; Xiao et al.,2011). Wang et al. (2014b) reported that the an-
nual average PM, 5 values were 56, 64, 75, and 86 p.Lg/m3 in Shanghai,
Hanghzou, Nanjing, and Hefei in 2013, respectively. The annual average
PM, s concentrations in the YRD significantly decreased by about 30%,
while the 90th percentile maximum daily average (MDAS8) O3 concen-
trations increased by 22% from 2013 to 2017 (Wang et al., 2020b).

A number of studies (Chang et al., 2019; Li et al., 2017; Wang et al.,
2017) have pointed out that regional transport plays a crucial role in
the formation of PM; 5 pollution, accounting for about 30-80% of the
total PM, 5 concentrations. Streets (Streets et al., 2007) used the
Community Multi-scale Air Quality (CMAQ) model to simulate the
contributions of the surrounding provinces and cities to Beijing's air
pollution during the 2008 Beijing Olympic Games. The results showed
that under the effect of a stable southerly wind, the pollution emissions
from Hebei Province greatly affected the air quality in Beijing, and
transport contributed 50-70% and 20-30% to the concentrations of
PM, 5 and Os, respectively. Jie and Li (2014) used the Granger Causality
test to explore the characteristics of air quality spillovers among the
cities in the Pearl River Delta, and they showed that the emissions in
Guangzhou and Foshan had significant impacts on the air quality in
Shenzhen and Zhuhai. Due to the proximity of cities, the intensive
emissions, and the relatively flat terrain in the YRD region, the mutual
transport of air pollution among cities is significant (Cheng et al.,
2011). Hu et al. (2018) revealed that the transport of O3 and its
precursors from Wuxi, Suzhou, and Shanghai plays an important role
in the high downwind O3 pollution in Nanjing and the western part of
the YRD region. Wang et al. (2020a) found that the local, Zhejiang and
Jiangsu emissions account for 53%, 19% and 14% of the non-
background MDAS Os in Shanghai in August 2013.

It is necessary to understand the impacts of transport on the local air
quality so that regional cooperative prevention and control measures
can be designed to effectively reduce PM, s and O3 pollution. Several
methods have been developed and used to estimate the impacts of
regional transport on local air quality. The Air Resources Laboratory's
HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT), the
Potential Source Contribution Function (PSCF), and the Concentration
Weighted Trajectory (CWT) method have been widely used to identify
major transport trajectories and high emission regions (Dimitriou
et al., 2015; Wang et al., 2010; Zhang et al., 2018; Zong et al., 2018).
However, these methods only take the atmospheric dynamics into
account and do not involve any chemical reactions. Compared with
the above models, the Chemical Transport Model (CTM) is more
suitable for the quantitative estimation of the transport contributions
because it contains a full description of the physical and chemical atmo-
spheric processes (Li et al., 2014; Wang et al., 2014a).

This study aims to quantitatively estimate the transport among the
cities in the YRD region. A source-oriented CMAQ model was used to
quantify the inter-city transport of PM; s and O3 among 41 cities in
the YRD region and to provide insights for effective regional cooperative
emission control strategies.

2. Methods
2.1. Model description
We used source-oriented CMAQ model v5.0.2 to track the emissions

of the precursors of PM, 5 and O3 from different regions. The source-
oriented CMAQ model has been continuously developed in our previous
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studies (Hu et al.,, 2017b; Hu et al., 2015; Shi et al., 2017; Wang et al.,
2019b; Wang et al., 2018; Zhang et al., 2012), and the details of the algo-
rithms are documented in these studies. Therefore only a brief descrip-
tion is given here. To develop a source-oriented treatment in the CMAQ
model, the vanilla version of the CMAQ model was modified by adding
additional tagged species and by expanding the chemical reactions. To
track the primary particles emitted from different regions, artificial
non-reactive tracers were added to represent the total primary mass
from each region (Hu et al.,, 2015), and the tracers were tracked sepa-
rately through all of the atmospheric processes, including emission,
transport, diffusion, and dry and wet deposition. To estimate the contri-
butions of the emissions from different regions to the secondary
inorganic PM, 5 (i.e., sulfate (S037), nitrate (NO3 ), and ammonium
(NHZ)), the emissions of their precursors (i.e., SO,, NOx, and NHs,
respectively) in the different regions were tagged, reactive tracers
were added, and the chemical mechanism that involved in SO, NO3,
NHjZ formation was expanded to track their formation during the
chemical transformation (Shi et al,, 2017; Zhang et al., 2014). A similar
treatment was created for regional source apportionment of the sec-
ondary organic aerosols (SOA) in the PM, 5 by tracking the emissions
of volatile organic compounds (VOCs), including long alkanes, high-
yield aromatics, low-yield aromatics, benzene, isoprene, monoterpenes,
and sesquiterpenes, from the different regions through all of the atmo-
spheric processes as they reacted to form low-volatility SOA products
(Huetal,, 2017a; Hu et al., 2017b; Wang et al., 2018). The contributions
of the emissions from different regions to the Os level were estimated
based on an improved O3 source apportionment method, which attri-
butes the O3 formation in each time step to NOx and VOCs based on
NOx-limited, VOC-limited, and transition regimes (Wang et al.,
2019a). The contributions from the different regions to the NOx and
VOCs were estimated using reactive region-tagged tracers, so that the
regional contributions to the O3 levels could be determined (Wang
etal, 2019b).

2.2. Model application

The modeling domain covered the entire YRD region. There are 41
cities in the YRD, and they were individually tracked in our study. The
cities include Shanghai, 13 cities in Jiangsu Province (i.e., Nanjing,
Wauxi, Xuzhou, Changzhou, Suzhou, Nantong, Lianyungang, Huaian,
Yancheng, Yangzhou, Zhenjiang, Taizhou, and Sugian), 11 cities in
Zhejiang Province (i.e., Hangzhou, Ningbo, Wenzhou, Jiaxing, Huzhou,
Shaoxing, Jinhua, Quzhou, Zhoushan, Tailzhou, and Lishui), and 16 cit-
ies in Anhui Province (i.e., Hefei, Wuhu, Bengbu, Huainan, Maanshan,
Huaibei, Tongling, Anqing, Huangshan, Chuzhou, Fuyang, Su4zhou,
Liuan, Bozhou, Chizhou, and Xuancheng). The modeling domain and
the locations of the cities are shown in Fig. 1. The region outside of the
YRD in the modeling domain is grouped as Non-YRD in the study. In
this study, the central point for the model domain was set at the coordi-
nate (32 N, 118E), and bidirectional nested technology was employed,
producing two layers of grids with a horizontal resolution of 36 km
and 12 km, respectively. The first layer of the grids has a 36 km resolu-
tion with 107*137 grids, covering most areas of Eastern China other
countries (including Japan, South Korea, North Korea). The inner do-
main has a 12-km resolution with 127*202 grids, covering the North
China Plain and YRD region. The 12 km domain results were presented
here. The anthropogenic emissions are based on two widely-used re-
gional inventories: the Multi-resolution Emission Inventory for China
(MEIC, http://www.meicmodel.org) for emissions within China and
the Regional Emission inventory in Asia v2.1 (Kurokawa et al.,, 2013)
for emissions outside of China. Biogenic emissions were estimated by
Model of Emissions of Gases and Aerosols from Nature (MEGAN) v2.1.
For more details, see (Qiao et al., 2015). Biomass burning emissions in-
cluding both gases and aerosols from the 2018 the Fire INventory from
NCAR (FINN), which is based on satellite observations (Wiedinmyer
et al,, 2011). The WRF model provided the meteorological field for the
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Fig. 1. Modeling domain (a) and the cities in the YRD region (b).

chemical transport model. The meteorological background field and
boundary information with a spatial resolution of 1" x 1" and temporal
resolution of 6 h were acquired from NCAR (National Center for Atmo-
spheric Research, https://ncar.ucar.edu).

We conducted model simulations for the entire period of the
EXPLORE-YRD (EXPeriment on the eLucidation of the atmospheric Oxida-
tion capacity and aerosol foRmation, and their Effects in the Yangtze River
Delta) field campaign, which took place from May 17 to June 17, 2018. In
our previous studies, we used the same version of the CMAQ model to
simulate the air quality (Wang et al., 2021) and conducted a source ap-
portionment study of the PM, 5 and O3 (Li et al,, 2021) during this period.
The model configurations of the meteorological inputs and the initial and
boundary conditions that were used in the previous studies were also
used in this study. Model predictions of Os, PM, 5, and its major compo-
nents were extensively evaluated against measured concentrations dur-
ing the campaign, and good agreement was generally found between
the predictions and measurements, which provides confidence in the
transport analysis conducted in this study. Therefore, the details of the
model evaluation are not repeated here (model predicted hourly NO,,
S0,, and O3 were illustrated in Figs. S1-S3 in the Supplement Materials),
and we focus on the results of the inter-city transport of PM, 5 and Os. The
contributions of 9 different cities to the PM, 5 and O3 can be solved in one
set of simulations, and we conducted 6 sets of simulations to fully obtain
the transport matrix for 41 cities in the YRD. The city settings for the 6 sets
of simulations are showed in Table S1 in the Supplemental Materials.

3. Results and discussion
3.1. Inter-city transport matrix for PM, 5 and O3

Table 1 shows the transport matrix for PM, s among the 41 cities.
The emissions from the local city itself make the largest contribution
in general, which is indicated by the diagonal in the table. The contribu-
tions from the other cities in the YRD normally do not exceed 10% indi-
vidually, except for a few cases, such as Nanjing's contribution in
Chuzhou, Hefei's contribution to Huainan, and Ningbo's contribution
to Shaoxing. Fig. 2 further summarizes the results and groups the contri-
butions into Local (emissions from the local city), Non-Local (emissions
from the other cities within the YRD), and Non-YRD (emissions from
the other regions outside of the YRD). During the study period, the
emissions in the YRD region (Local + Non-Local) contributed the ma-
jority of the PM; 5 in all of the cities. The Non-YRD emissions accounted
for 24.8% of the PM, 5, with a maximum contribution of 49.4% in

Shanghai and a minimum contribution of 12.8% in Maanshan. The
Non-YRD emissions contributed more than 40% of the PM, 5 in four
coastal cities, i.e., Shanghai (49.4%), Zhoushan (48.0%), Lishui (45.4%),
and Wenzhou (41.5%), due to the dominant southeasterly winds during
this period (Wang et al., 2021). The Non-YRD emissions contributed less
than 15% in Maanshan (12.8%), Tongling (12.9%), Nanjing (13.2%), Hefei
(13.5%), Wuhu (13.6%), Zhenjiang (13.9%), and Huainan (15.0%). These
seven cities are all located in the middle of the YRD region.

Among the YRD emissions, the contributions of the Local emissions
varied from 8.8% (Su4zhou) to 43.2% (Ningbo), with an average value of
25.3%; and the contributions of the Non-Local emissions varied from
10.5% (Shanghai) to 67.1% (Tongling), with an average of 49.9%. The
Local contributions were only greater than the Non-Local contributions
in three cities: Shanghai, Wenzhou, and Ningbo. These three cities are
located at the east edge of the YRD region. During the study period
(May-June 2018), the prevailing directions were southeast to northeast
(illustrated in Fig. 4 for Taizhou as an example), resulting that the ‘Non-
local’ emissions were mostly in the downwind areas of the three cities.
The Non-Local YRD emissions contributed over 50% of the PM, 5 in 23
out of 41 of the cities. These results indicate that transport among cities
in the YRD is significant, and multi-city cooperative emission control pro-
grams are necessary to reduce the PM, 5 in most of the cities in the YRD.

Table 2 shows the transport matrix for Os for the 41 cities, and Fig. 3
illustrates the contributions of the Local, Non-Local, and Non-YRD emis-
sions to the O5 formation in each city. The average Non-YRD contribution
of the 41 cities was 19.5%. The Non-YRD contributions exceeded 30% in
five cities, i.e., Zhoushan (48.2%), Shanghai (42.6%), Fuyang (34.6%), Wen-
zhou (33.7%), and Lishui (31.3%), and the Non-YRD contribution was is
lower than 10% in seven cities, i.e., Wuxi (6.6%), Zhenjiang (6.8%), Nanjing
(7.1%), Changzhou (7.6%), Shaoxing (8.3%), Jinhua (9.7%), and Maanshan
(9.8%). The local contributions to O3 were greater than 40% in Suzhou,
Nanjing, Shaoxing, Shanghai, Ningbo, Wuxi, Hangzhou, Nantong, and
Wenzhou; while the local contribution was only 9.7% in Su4zhou and
16.0% in Zhoushan. The Os values in the cities of Tongling, Maanshan, Su4-
zhou, Changzhou, and Wuxi were affected by the Non-Local YRD emis-
sions the most, and the Non-Local emissions contributed 64.4%, 63.3%,
62.5%, 61.7%, and 61.1% to these cities, respectively. In total, there were
19 cities with Non-Local contributions of greater than 50%.

3.2. Inter-city contributions of PM5 s and Os in Taizhou

We further analyzed the inter-city contributions of PM; 5 and O3 in
Taizhou where the EXPLORE-YRD campaign took place. Fig. 4 shows
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Fig. 2. Contributions of emissions from the local city (‘Local’), the other cities in YRD (‘Non-Local’), and the other regions outside YRD (‘Non-YRD’) to PM, 5 in 41 cities during the EXPLORE-

YRD campaign.

the time series of the inter-city transport contributions to the PM, 5 in
Taizhou during the study period. On the five days with high PM, 5 levels
(May 24th, May 30th, June 1st, June 6th, and June 13th), the contribu-
tions of Suzhou and Shanghai were relatively large (~20%). Wuxi also
significantly contributed on May 30th and Nantong was important on
June 1st, contributing about 30%. These cities are located to the south-
east of Taizhou. On the pollution days, the wind from the southeast
blows pollution from the upwind cities.

Fig. 5 shows the transport characteristics at different times.
Throughout the entire study period, the cities in the YRD that made im-
portant contributions to the PM, 5 in Taizhou were as follows: Taizhou
(18%), Suzhou (12%), Nantong (12%), Wuxi (8%), Shanghai (5%),
Changzhou (4%), Yancheng (4%), Zhenjiang (3%), and Yangzhou (2%).
All of the other cities contributed less than 1% individually. By compar-
ing the transport contributions during the daytime (i.e., 6:00 to 18:00)
to those during the nighttime (i.e., 18:00 to 6:00), it was determined
that the local contribution was 5% lower during the nighttime. For ex-
ample, Nantong's contribution was 6% higher and Suzhou's contribution
was 4% higher, indicating stronger local contributions of primary emis-
sions during the daytime and more regional contributions during the
nighttime. We also analyzed the contributions on PM; 5 pollution days
(indicated by ‘PM25_EPS’ in Fig. 5, defined as days with a daily average
PM, 5 concentration of greater than 75 pg m~>). Suzhou, Wuxi, and
Changzhou contributed 3-9% more to the PM, 5 in Taizhou on pollution
days, while Nantong and Yancheng become much less important com-
pared to their contributions on non-pollution days. Geographically
Suzhou, Wuxi, and Changzhou are closer to Taizhou than Nantong and
Yancheng. On the pollution days, the meteorological conditions were
more stagnant, and therefore, the contributions from these cities
became more important.

The contributions to the different PM, 5 components during the study
period are shown in Fig. 6. The regional contributions to the different
components of the PM, s in Taizhou are substantially different. The
Local emissions were the largest source of primary PM, 5 in Taizhou, ac-
counting for 26.3%. The largest source of secondary PM, 5 was emissions
from outside of the YRD region, accounting for 30.4%, with local sources
only contributing 7.9%, which is even smaller than those of Nantong
and Suzhou. Among the secondary PM, s, the non-YRD emissions con-
tribute about 54.7% of the SO~ and 25.5% of the NO3", but only 7.9% of
the SOA. The local VOC emissions were the largest source of SOAs in
Taizhou, contributing 40.3%. These results indicate that VOC emission
controls in local and nearby cities could effectively reduce the SOA
concentrations, but reducing the amount of SO~ would require SO,
emission controls over much larger areas.

Li et al. (2021) demonstrated that during the EXPLORE-YRD cam-
paign, the background O3 (Os that directly enters the domain through
initial and boundary conditions) contributed more than half of the
total O3 on low Os days, and the non-background O3 (O3 produced by
photochemical reactions) contributed significant amounts on high O3
days. Fig. 7 shows the time series of the regional contributions to the
non-background Os. The local sources for Taizhou contribute more
when the non-background O3 concentration is higher. In addition to
local sources, Nantong and Yancheng also made significant contribu-
tions on these days. Similar to the PM, s, the transport contributions
to the non-background O3 were different during the day and at night
and on O3 pollution days (defined as a daily maximum 8 h average O3
of greater than 160 pug/m>) vs. non O pollution days (Fig. 8). The local
sources in Taizhou contributed more during the daytime, but their con-
tributions remained the same on pollution days and non-pollution days.
However, on O3 pollution days, the contributions from Wuxi, Suzhou,
Changzhou, Zhenjiang, and Yangzhou significantly increased. Their
total contributions to the O in Taizhou were 20% on non-O3 pollution
days and 39% on O3 pollution days.

3.3. Transport range and implications for regional emission control

The above described analyses clearly show that multi-city coopera-
tive emission controls are necessary in order to improve the air quality
in any of the cities in the YRD. A key question is: What is an appropriate
range for the regional emission controls? If the range is too small, then it
will not be effective enough to reduce PM, 5 or O3 concentrations, but if
the range is too large, it may cause unnecessary economic losses. To an-
swer this question, we calculated the cumulative contributions to the
PM, s and O3 pollution in a certain city while accounting for the YRD cit-
ies within different distances. We repeated the calculation for all 41 YRD
cities and conducted fitting using the mean values for the different dis-
tances. The fitting uses the form of the Michaelis-Menten equation as-
suming the cumulative contribution (y) of regional transport within a
distance range x as follows:
¥ =Kix/(Kz + %) (1)
where K; indicates the maximum contribution of regional transport,
and K, is the distance where the regional transport contribution is half
of the maximum contribution. The results are shown in Fig. 9. The fitting
R? values are over 0.85 for PM, 5, O3, and primary and secondary PM, s,
suggesting the assumption that the cumulative contribution of regional
transport satisfies the Michaelis-Menten equation is reasonable. For
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Fig. 3. Contributions of emissions from the local city (‘Local’), the other cities in YRD (‘Non-Local’), and the other regions outside YRD (‘Non-YRD’) to non-background O3 in 41 cities during

the EXPLORE-YRD campaign.

PM, s, cumulative contributions of 50%, 60%, and 70% correspond to
emissions within distances of 92, 184, and 662 km, respectively. In other
words, the regional cooperative emission controls for cities within a dis-
tance of at least 184 km are typically needed since these cities dominate
the PM, 5 contributions. However, the corresponding distances for pri-
mary and secondary PM, s are significantly different. As is shown in
Fig. 9(c) and (d), for a cumulative contribution of 50%, the distance is

50 km for primary PM; s and is 231 km for secondary PM, s. For a cumu-
lative contribution of 60%, the distance becomes 92 km for primary
PM, s and 515 km for secondary PM, s. Therefore, reducing emissions
of primary PM,s in local and the cities within a distance of about
100 km is effective enough to reduce the primary PM; 5 concentrations,
but reducing the secondary PM; 5 in the YRD requires joint emission
controls over much larger areas. A cumulative contribution of 60% to
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Fig. 4. Hourly contributions of transport from individual cities to PM, 5 in Taizhou during the EXPLORE-YRD campaign.
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Fig. 5. Average relative contributions of inter-city transport to PM, s in Taizhou during the entire periods (‘PM25_MEAN’), daytime (‘PM25_DAY’, 6:00 to 18:00), nighttime (‘PM25_NIGHT’,
18:00 to 6:00), PM, 5 pollution days (‘PM25_EPS’, daily average PM, 5 concentration greater than 75 pug m—>), and PM, 5 non pollution days (‘PM25_NO_EPS’).
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Fig. 6. Relative contributions of Inter-city transport to (a) primary PM, s, (b) secondary PMs s, (c) SO3~, (d) nitrate (NO3 '), and (e) SOA in Taizhou during the EXPLORE-YRD campaign.
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03_MEAN
03_DAY 6| B
03_NIGHT

06-17

Huaibei
Huangshan
Fuyang
Liuan
Bozhou
Other

I Shanghai «++  Yangzhou TEEE  Shaoxing

#S¢ Nanjing === Nantong B2 Jinhua

B Suzhou B Yancheng fSSE Jiaxing

EEE Wuxi bo Taizhou EE Huzhou

EEE Changzhou H==E  Hangzhou H==E  Zhoushan

NN Zhenjiang fSS8 Ningbo 1 Tailzhou e

Hefei @z Chizhou e
Wuhu ¥z Xuancheng Qioig
Maanshan E& 8 Wenzhou fiEiEE
Tongling EEE  Xuzhou jimm ol
Anging 77/, Sudzhou Zzz,

Chuzhou EEE  Lianyungang (727

Huanan
Sugqian
Quzhou
Lishui
Bengbu
Huainan

777, Huaibei
@7 Huangshan
/7 Fuyang
7//+ Liuan
/7 Bozhou
I Other

Fig. 8. Average relative contributions of inter-city transport to non-background O; in Taizhou during the entire periods (‘O3_MEAN’), daytime (‘O3_DAY’, 6:00 to 18:00), nighttime
(*O3_NIGHT’, 18:00 to 6:00), O pollution days (‘O3_EPS’, daily maximum 8 h average O; more than 160 pg/m?), and Os non pollution days (‘O3_NO_EPS’).

11



K. Gong, L. Li,J. Lietal.

100
(a) PM25
= g -
2 60 Tyl 4 {
£ :
(o]
o ¥
= 40 }"|V
=] L
S g
on
2 R2=0.88
------ y=74.81%x/(45.47+x)
0
0 200 400 600 800
Distance, km
100
(YPPM25 .oo: s,
i AR
= B B T 5 5 ok i S A
@ 60 4
=
8 /
= 40
5
= .
------ y=79.07%x/(29.20+x)
0+
0 200 400 600 800

Distance, km

Science of the Total Environment 779 (2021) 146619

100
(b) 03 LY
g T
-:': 60 prec
£
3 /
= 40
=
.S
ch
& 20 R2=0.88
_____ y=78.74*x/(29.51+x)
0
0 200 400 600 800
Distance, km
100
(d) SPM25
= 80 :
5 AL
.8
o
5 1 i
g 4
= 40 %
= <
[e]
‘En /i 2
2 }I R2=0.92
_____ y=71.66*x/(100.01+x)
il .
0 200 400 600 800
Distance, km

Fig. 9. The accumulative regional contributions as a function of distance in YRD for (a) PM, s, (b) non-background Os, (c) primary PM, s, and (d) secondary PM, s. The gray dots represent
the results of all cities, and the dark dots with error bars represent the mean and standard deviations. The blue dash lines represent the fitted curves.

the O3 level corresponds to emissions within a distance of 94 km (Fig. 9
(b)). Undoubtedly, the distances estimated in this study are affected by
the meteorological conditions and would be different during other time
periods. In the future, we will investigate the impacts of inter-city trans-
port on PM, 5 and O3 during different seasons in order to obtain a more
general sense of the distance required for regional cooperative PM, 5
and Os controls in the YRD.

4. Conclusions

The impacts of inter-city transport on PM; s and O3 pollution in all of
the 41 cities in the YRD region were estimated using a source-oriented
CMAQ model during the EXPLORE-YRD campaign. The results show
that inter-city transport is very significant in the YRD region. On average,
the emissions from the local city, the other YRD cities, and the regions
outside of the YRD contributed 25.3% (min-max: 8.8-43.2%), 49.9%
(min-max: 10.5-67.1%), and 24.8% (min-max: 12.8-49.4%) to the PM, s,
respectively; and they contributed 33.7% (min-max: 9.7-48.5%), 46.8%
(min-max: 14.1-64.4%), and 19.5% (min-max: 6.6-48.2%) to the non-
background Os, respectively. In Taizhou, the local contribution to the
PM, 5 during the daytime was 5% higher than during the nighttime, and
the transport contributions from Nantong and Suzhou were 6% and 4%
lower, respectively. On PM, 5 pollution days, the transport contribution
from the cities of Suzhou, Wuxi, and Changzhou became more important
(3-9% higher), but the local contribution was 4% lower, and the transport
contributions from the farther away cities of Nantong and Yancheng were
5-9% lower. Similar conclusions can be drawn for the Os in Taizhou.
Therefore, emission controls in local and these nearby cities should be
more strongly enforced on pollution days. Local emissions and inter-
city transport from other YRD cities dominate the primary PM; 5 and
SOA, while transport from outside the YRD are important for the second-
ary inorganic components, e.g., contributing more than half of the SO5 ™.

12

On average, the cities within distances of 184 km and 94 km contributed
to 60% of the PM; 5 and Os, respectively. Therefore, we suggest that re-
gional cooperative control programs in the YRD should be considered
for emission controls in the cities within these ranges. We also suggest
that SO, and NO, emission controls should be enforced on a much larger
scale to reduce the secondary inorganic PM, 5 in the YRD.
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