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ABSTRACT: Projection of future aerosols and understanding the
driver of the aerosol changes are of great importance in improving
the atmospheric environment and climate change mitigation. The
latest Coupled Model Intercomparison Project Phase 6 (CMIP6)
provides various climate projections but limited aerosol output. In
this study, future near-surface aerosol concentrations from 2015 to
2100 are predicted based on a machine learning method. The
machine learning model is trained with global atmospheric
chemistry model results and projects aerosols with CMIP6 multi-
model simulations, creatively estimating future aerosols with all
important species considered. PM2.5 (particulate matter less than
2.5 μm in diameter) concentrations in 2095 (2091−2100 mean)
are projected to decrease by 40% in East Asia, 20−35% in South
Asia, and 15−25% in Europe and North America, compared to those in 2020 (2015−2024 mean), under low-emission scenarios
(SSP1-2.6 and SSP2-4.5), which are mainly due to the presumed emission reductions. Driven by the climate change alone, PM2.5
concentrations would increase by 10−25% in northern China and western U.S. and decrease by 0−25% in southern China, South
Asia, and Europe under the high forcing scenario (SSP5-8.5). A warmer climate exerts a stronger modulation on global aerosols.
Climate-driven global future aerosol changes are found to be comparable to those contributed by changes in anthropogenic
emissions over many regions of the world in high forcing scenarios, highlighting the importance of climate change in regulating
future air quality.
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1. INTRODUCTION

Aerosols are one of the primary air pollutants that have adverse
effects on the atmospheric environment and public health
through damage to human respiratory and cardiovascular
systems,1 especially the particulate matter with a diameter of
less than 2.5 μm (PM2.5). Atmospheric aerosols impact
regional and global climate in several ways.2 Aerosols influence
the Earth’s radiation budget directly by absorbing and/or
scattering solar radiation. On the other hand, aerosols modify
the optical properties and lifetime of clouds and precipita-
tion.3,4 Therefore, a deeper understanding of atmospheric
aerosols is of significance in both the environment and climate
policy making.5

In recent decades, atmospheric aerosols have been changing
considerably in various regions across the world. Since 1980s,
aerosols have been decreasing in North America and Europe6,7

but increasing in Asia until the implementation of clean air
actions in China after 2013.8−10 Monitoring networks, such as
the Interagency Monitoring of Protected Visual Environments
(IMPROVE)11 in the United States and the European
Monitoring and Evaluation Programme (EMEP)12 in Europe,
were established to measure near-surface aerosol concen-

trations. However, very few long-term monitoring networks
exist in developing countries.13 Numerical models have been
widely applied to reproduce global aerosols in many previous
studies to complement the limited observational data (e.g.,
Wang et al.14). Moreover, machine learning methods are useful
in depicting the spatial distribution and temporal variations of
atmospheric aerosols based on limited observations. Li et al.15

constructed a gridded data set of near-surface PM2.5
concentrations over China from 1980 to 2019 using a machine
learning approach, which showed a good performance in
reproducing historical PM2.5 concentrations, with a coefficient
of determination of 0.96 between model-predicted values and
observations.
Projections of future changes in atmospheric aerosols

facilitate environmental and climate predictions. Within the
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latest Coupled Model Intercomparison Project Phase 6
(CMIP6),16 the Scenario Model Intercomparison Project
(ScenarioMIP)17 provides future projections of many climate
variables based on state-of-the-art climate models with various
emission scenarios and land use changes under the Shared
Socioeconomic Pathways (SSPs). However, many of the
CMIP6 models do not provide variables of aerosol
components and chemical processes since they focus on future
changes in climate rather than air quality.18,19 Moreover,
different aerosol components, such as nitrate, ammonium, and
organic aerosols, are not fully represented in the majority of
climate models, partly due to the consideration of the
computational efficiency.20,21 With available data, Turnock et
al.20 reported that PM2.5 was underrepresented in the CMIP6
models over Asia, Europe, and North America. Some studies
directly used emissions in the future scenarios as input to
global chemical transport models, driven by present-day
meteorological data, to project future aerosol changes.22,23

This method does not take into account any impacts of climate
change on aerosols through chemical, transport, and
scavenging processes.
In addition to anthropogenic emissions, changes in

meteorological fields under climate change may also exert
significant influences on aerosol concentrations.24−26 Cai et
al.25 found that in a high forcing scenario, the frequency of
weather conditions conducive to severe haze events in
northern China would increase by 50% in 2050−2099 relative

to 1950−1999 due to the strengthened atmospheric stagnation
under global warming. Gonzalez-Abraham et al.27 and Val
Martin et al.28 projected increases in PM2.5 concentrations in
many U.S. regions as a result of increases in biogenic
emissions, land use changes, and wildfire burning related to
the meteorological changes. However, it is also argued that
there would be a negligible change in extreme winter haze
events in northern China29 and a decrease in PM2.5
concentrations in the U.S. due to increased precipitation in
winter.30 Effects of climate change on aerosols are complicated
because projections of the dominant meteorological factors
driving aerosol variations are often unreliable.31 Nonetheless,
many of the findings mentioned above are based on regional
downscaling simulations with meteorological factors coming
from one single climate model, which have large uncertainties
in the future aerosol prediction.
In this study, global near-surface aerosol concentrations

during 2015−2100 are projected using a combination of data
sets, including speciated present-day global three-dimensional
aerosols from an atmospheric chemical transport model
(GEOS-Chem), SSP future emissions, meteorological fields
from CMIP6 multi-model simulations, and other auxiliary data,
together with a machine learning method. The impact of
climate change on aerosol concentrations is also quantitatively
separated out from that driven by both emissions and climate
change. The novel method in this study takes advantage of the
chemical transport model in predicting more complete aerosol

Table 1. Summary of Data Sets Used in This Study

data set type variable description spatial resolution time period data source

aerosol BC black carbon 2° × 2.5° 2005−2014 (historical) GEOS-Chem simulation
OC organic carbon
NH4

+ ammonium
NO3

− nitrate
SO4

2− sulfate
meteorology T_2m air temperature at 2 m 2° × 2.5° 2005−2014 (historical);

2015−2100 (future)
MERRA-2 (historical); adjusted CMIP6

(future)T_850 air temperature at 850 hPa
T_500 air temperature at 500 hPa
U_850 zonal wind at 850 hPa
U_500 zonal wind at 500 hPa
V_850 meridional wind at 850 hPa
V_500 meridional wind at 500 hPa
RH relative humidity

PRECP precipitation rate
CLT total cloud cover
RSDS incoming shortwave radiation

at the surface
SLP sea level pressure

emission BC black carbon 2° × 2.5° 2005−2014 (historical);
2015−2100 (future)

CMIP6 (global, historical and future);
MEIC (China, historical)OC organic carbon

CO_BB carbon monoxide from
biomass burning

CO_Anthro carbon monoxide from
anthropogenic sources

MTERP monoterpenes 2014
ISOP isoprene 2014
NH3 ammonia 2005−2014 (historical);

2015−2100 (future)NOx nitrogen oxides
SO2 sulfur dioxide

land use LC land cover 300 m × 300 m 2010 ESA CCI
NDVI normalized difference

vegetation index
0.05° × 0.05° 2010 AVHRR

topography TOPO digital elevation model 90 m × 90 m 2010 SRTM
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species with future climate from multi-models, with the
consideration of the impact from climate change on aerosols.

2. MATERIALS AND METHODS

2.1. GEOS-Chem Model Simulations. To train the
machine learning model, historical aerosol concentrations are
required and are produced by a global chemical transport
model simulation. In this study, 10 year global speciated
aerosols, including black carbon (BC), organic carbon (OC,
sum of primary and secondary organic carbon), ammonium
(NH4

+), nitrate (NO3
−), and sulfate (SO4

2−), over 2005−2014

are produced by the GEOS-Chem model v12.9.3 (http://
acmg.seas.harvard.edu/geos/), which is driven by the Modern-
Era Retrospective analysis for Research and Applications,
version 2 (MERRA-2) meteorological fields.32 The GEOS-
Chem model here employs 47 vertical levels and a horizontal
resolution of 2° latitude by 2.5° longitude. It has fully coupled
aerosol−O3−NOx−hydrocarbon chemical representa-
tions.33−35 The PM2.5 concentration is calculated as the sum
of concentrations of BC, OC, NH4

+, NO3
−, and SO4

2− in this
study. The secondary organic aerosol (SOA) in OC is
simulated using the simple SOA scheme, which requires

Figure 1. Density scatterplots of predicted vs simulated near-surface aerosol concentrations (BC, OC, NH4+, NO3
−, SO4

2−, and PM2.5, μg m−3)
using the testing samples in 2010. The gray and red solid lines show the 1:1 line and linear regression line, respectively. Statistical metrics including
R2 (unitless), RMSE (μg m−3), MAE (μg m−3), and MRE (%) are given at the top left of each panel. The PM2.5 concentration is calculated as the
sum of concentrations of BC, OC, NH4+, NO3

−, and SO4
2− in this study.
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emissions of monoterpenes, isoprene, and anthropogenic and
biomass burning carbon monoxide (CO). The GEOS-Chem
model has proven to be a practical tool in simulating
atmospheric compositions and spatiotemporal distributions
of aerosols on local to global scales.36−38 We perform a GEOS-
Chem simulation from 2005 to 2014 using both emissions and
meteorological fields varying with time during the simulation.
The global historical (2005−2014) monthly anthropogenic

and biomass burning emissions of aerosols and their precursors
are obtained from the CMIP6 experiment.39,40 During the
recent decades, anthropogenic emissions of aerosols have
changed greatly since the implementation of clean air actions
over China.15,41 The Multi-resolution Emissions Inventory
(MEIC), which is a national emission inventory for China,
instead of CMIP6 is used for anthropogenic aerosol emissions
over China. Furthermore, as the machine learning input data,
we interpolate the decadal emissions over 2015−2100 under
SSPs from CMIP6 into each year using the linear interpolation
method. In general, emissions of BC, OC, NOx, and SO2 are
projected to decrease in the future, while the NH3 emission has
no significant trend (Figure S1). There is a discontinuity in
emissions between 2014 (historical) and 2015 (future)
because MEIC emissions are used to replace the CMIP6
historical emissions in China. The overestimate of anthro-
pogenic emissions in 2015 could cause an overestimate of
future aerosol concentrations. SSP scenarios that do not fully
consider regional pollution control policies would also
overestimate the impact of climate change on aerosols.
2.2. CMIP6 Multi-Model Simulations. Predicting future

aerosol concentrations using a trained machine learning model
needs meteorological field data under future scenarios, which
can be obtained from the ScenarioMIP multi-model simu-
lations in CMIP6 (https://esgf-node.llnl.gov/search/cmip6/).
In this study, a variety of monthly meteorological variables,
including air temperatures at 2 m, 850 hPa, and 500 hPa, wind
fields at 850 and 500 hPa, precipitation rate, total cloud cover,
relative humidity, sea level pressure, and incoming shortwave
radiation at the surface, are selected to predict aerosol

concentrations (Table 1). These meteorological factors have
shown substantial influences on aerosols.25,42−50

In total, 18 CMIP6 models (ACCESS-CM2, ACCESS-
ESM1-5, CanESM5, CESM2-WACCM, CMCC-CM2-SR5,
EC-Earth3-Veg, EC-Earth3, FGOALS-f3-L, FGOALS-g3,
GFDL-ESM4, INM-CM5-0, IPSL-CM6A-LR, MIROC6,
MPI-ESM1-2-HR, MPI-ESM1-2-LR, MRI-ESM2-0, Nor-
ESM2-LM, and NorESM2-MM) have all of these monthly
meteorological fields under four future scenarios, including the
sustainable scenario (SSP1-2.6), medium forcing scenario
(SSP2-4.5), medium to high forcing scenario (SSP3-7.0), and
high forcing scenario (SSP5-8.5). Note that our machine
learning model is trained with GEOS-Chem meteorological
fields originally obtained from MERRA-2 reanalysis but
predicts aerosols with CMIP6 model-simulated meteorology
under climate change. To minimize the impact of incon-
sistency in meteorology between CMIP6 models and the
GEOS-Chem model, the CMIP6 meteorological variables in
2015−2100 are adjusted by their potential bias, characterized
as the difference in their historical climatological mean (2005−
2014) and MERRA-2. This adjustment process also removes
inconsistency in the initial conditions of meteorological fields
used by different CMIP6 models.

2.3. Predicting Aerosols Using a Machine Learning
Method. Machine learning has been widely adopted in recent
aerosol studies because of its computational efficiency and
superior performance.15,51,52 Here, we use a random forest
(RF) model to predict global aerosol concentrations with input
data of GEOS-Chem aerosol concentrations, meteorological
parameters, emissions, land cover (LC, http://maps.elie.ucl.ac.
be/CCI/viewer/download.php), topography (TOPO, https://
cgiarcsi.community/data/srtm-90m-digital-elevation-database-
v4-1/), normalized difference vegetation index (NDVI,
https://www.ncei.noaa.gov/data/avhrr-land-normalized-
difference-vegetation-index/access/), and spatiotemporal in-
formation (month of the year and geographic location of each
model grid), following Li et al.15 The RF model is individually
trained and then predicts concentrations for each aerosol

Figure 2. Spatial distributions of the performance statistics of the RF model-estimated historical PM2.5 concentrations in regards to (a) R2

(unitless), (b) RMSE (μg m−3), (c) MAE (μg m−3), and (d) MRE (%) over 2005−2014. The box-outlined areas in (a) mark East Asia (EA, 15−
50°N, 95−160°E), Europe (EU, 25−65°N, 10°W−50°E), North America (NA, 15−55°N, 60−125°W), and South Asia (SA, 5−35°N, 50−95°E).
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component. Steps showing the concrete procedure of using the
RF model for predicting future near-surface aerosol concen-
trations are presented in Text S1. Although the machine
learning model testing is based on the data sets in 2010, which
is the warmest year over land during 2005−2014, the air
temperature will also be higher under the influence of
greenhouse gases in the future scenarios.

3. RESULTS

3.1. RF Model Performance in Aerosol Prediction. The
RF model performance in predicting aerosol components and
PM2.5 concentrations across the globe in 2010 is characterized
with aerosol data samples from GEOS-Chem and is shown in
Figure 1. The predictive capability of the RF model is crucial
for determining whether it can predict aerosols in the future
well. The predicted PM2.5 concentrations manifest a good
consistency with the corresponding GEOS-Chem simulations
in 2010, with an R2 of 0.95 and a magnitude of relative error
(MRE) of 21%, demonstrating a good performance of the RF
model. By examining the importance scores, referred to as the
scores of input features in predicting aerosols, emission is
found to be the most important feature for the RF model with
individual contributions of 30−60% for different aerosol
species, and emission is also strongly correlated with aerosol
concentrations with a correlation coefficient (R) of 0.6−0.9
(Figure S2). Land cover contributes 10% to the model and is
negatively correlated with aerosol concentrations. Other
factors have individual contributions less than 10%. Temper-

ature at 2 m and sea level pressure are positively correlated
with many aerosol concentrations with an R higher than 0.5.
Figure 2 presents the spatial distributions of statistical

metrics for the RF model in estimating near-surface PM2.5
concentrations during 2005−2014. Overall, the RF model
performs well with small estimation biases in most areas of the
globe. Approximately 80% of land areas have an R2 greater than
0.85, particularly in the key regions of interest including East
Asia, South Asia, Europe, and North America. Around 85%
(99%) of land areas have low estimation biases with a root
mean squared error (RMSE) [mean absolute error (MAE)] <
0.5 μg/m3. Moreover, 91% of land areas have an MRE of less
than 25%. Note that the model has a relatively large bias in
estimating aerosols over high-latitude North America and Asia,
which are mostly related to the pollutant transport from mid-
latitudes or the local burning emissions,53,54 suggesting that the
model can be improved by taking these factors, such as wind
fields over the source regions, into consideration in the future
studies. Similar statistical metrics for individual aerosol
components are given in Figure S3.
The RF model performance in the temporal variation of

PM2.5 estimation from 2005 to 2014 is evaluated and presented
in Figure S4. The RF model-estimated global PM2.5
concentration is highly correlated with the GEOS-Chem
simulation with above 93% of the days having an R2 > 0.95.
More than 96% of the days have an RMSE (MAE) lower than
1.0 (0.3) μg/m3, and 93% of the days have an MRE lower than
25%. This does show that biases increase in boreal summer

Figure 3. Spatial distributions of differences (μg m−3) in future global near-surface PM2.5 concentrations under the four scenarios (SSP1-2.6, SSP2-
4.5, SSP3-7.0, and SSP5-8.5, from the top to the bottom) between 2020 (2015−2024 mean) and 2095 (2091−2100 mean) with both emissions
and meteorological fields changed (a), and only meteorological fields changed (b), respectively. Right two columns show percentage differences
(%) in 2095 (2091−2100 mean) relative to 2020 (2015−2024 mean) with both emissions and meteorological fields changed (c) and only
meteorological fields changed (d). No overlay indicates statistical significance with 95% confidence from a two-tailed t test.
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and decrease in boreal winter mostly due to the OC estimation
(Figure S5). In general, these statistical metrics indicate that
the RF model is capable of describing the spatial distributions
and temporal variations of near-surface aerosol concentrations
in many regions of the globe.
3.2. Projection of Aerosol Variations in the Future.

Figure 3a shows the spatial differences in annual mean near-
surface PM2.5 concentrations between the first and last decade
of 2015−2100 under the four scenarios with both varying
emissions and meteorological fields, and Figure 3c gives the
corresponding percentage values [concentrations in 2020
(2015−2024 mean) and 2095 (2091−2100 mean) are
shown in Figure S6]. Concentrations of PM2.5 and individual
aerosol species (Figures S7−S11) are projected to decrease in
2095 compared to that in 2020 over many key regions of the
world, including East Asia, South Asia, Europe, and North
America in all SSPs, which is mostly related to the decreasing
emissions in the future (Figure S12). The maximum decrease
occurs in eastern China with a percentage decrease larger than
50% in SSP1-2.6 and SSP2-4.5 scenarios. Low emission
scenarios (SSP1-2.6 and SSP2-4.5) produce a larger decrease
in PM2.5 concentrations than high forcing scenarios (SSP3-7.0
and SSP5-8.5), suggesting that sustainable development
scenarios are the more favorable future paths in improving
global air quality than high forcing scenarios. Over north of
60°N, PM2.5 concentrations increase in all SSPs except SSP1-
2.6, which is probably related to the RF model biases in
predicting aerosols at high latitudes.
The percentage and absolute changes in regional aerosol

concentrations between 2020 and 2095 under the four SSPs
are shown in Figures 4 and S25, respectively. Over East Asia,
the PM2.5 concentrations is projected to decrease considerably

under the four future scenarios, with a maximum decrease of
around 40% under the SSP1-2.6 and SSP2-4.5 scenarios.
NO3

−, OC, and SO4
2‑ decrease the most among all aerosol

species, which primarily results from large reductions in future
precursor emissions (Figure S12). Averaged over Europe and
North America, the PM2.5 concentrations would be reduced by
15−25% under low emission scenarios. It is interesting that
concentrations of OC, SO4

2−, and NH4
+ would increase under

SSP5-8.5 in North America (Figure 4e), although the aerosol
and precursor emissions decrease in the future (Figure S1),
indicating that climate change plays an important role in future
aerosol changes over North America. PM2.5 concentrations in
South Asia are projected to decrease in all SSPs by 20−35%,
except for SSP3-7.0 with a weak increase of less than 5% due to
insignificant emission changes over this region.

3.3. Climate-Driven Aerosol Variations. In addition to
changes in anthropogenic emissions, future aerosols can also
be modulated by climate change. Figure 3b,d shows the
absolute and percentage changes, respectively, in near-surface
PM2.5 concentrations in 2095 relative to 2020, driven by
climate change associated with the four SSPs. Generally
speaking, a warmer climate exerts a stronger modulation on
global aerosols. The effects of climate change on the future
aerosol changes are comparable to those driven by both
anthropogenic emissions and climate change over many
regions of the world in SSP5-8.5, highlighting the importance
of climate change in the future aerosol variations. However, the
PM2.5 concentrations over East Asia, South Asia, and Europe
would decrease by up to 25% driven by climate change alone,
which are less than that due to both anthropogenic emissions
and climate change (up to 50%) under the SSP5-8.5 scenario.

Figure 4. Percentage change (%) of near-surface aerosol concentrations (BC, OC, NH4+, NO3
−, SO4

2−, and PM2.5) under the four SSP scenarios in
2095 relative to 2020 with both emissions and meteorological fields changed and only meteorological fields changed, respectively, over four
selected regions including EA (a,b), EU (c,d), NA (e,f), and SA (g,h). Circles denote that the changes are statistically significant at the 95%
confidence level from a two-tailed Student’s t test.
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In China, aerosol changes show a dipole spatial pattern with
increases in concentrations over northern China and decreases
over southern China. By defining a haze weather index using
CMIP5 data, Cai et al.25 found that wintertime severe haze
events would occur more frequently in Beijing over northern
China under future climate change than that in historical
conditions, while a negligible change was reported in another
study.29 Using the predicted aerosol concentrations with
CMIP6 data, we show that the climate-driven PM2.5
concentrations will increase by 10−25% in northern China
under the high forcing scenarios in all seasons except spring
(Figures S26−S29), supporting the finding of Cai et al.25 Over
South Asia and Europe, PM2.5 concentrations are projected to
decrease by up to 0−25% under the SSP5-8.5 climate change.
PM2.5 concentrations would increase by 10−25% in western
U.S., which is mainly due to the increase in surface air
temperature and decrease in precipitation over this region
under the SSP5-8.5 scenario (Figure S30).
Averaged over East Asia, due to the offset of the dipole

changes in northern and southern China, climate-driven annual
PM2.5 concentrations have small decreases (less than 3%) in
2095 relative to 2020 under all SSPs (Figure 4b). Future trends
in meteorological parameters under climate change (Figures
S13−S24) are responsible for the aerosol changes. SO4

2− is
projected to increase in East Asia under climate change and
other aerosols will decrease, indicating that chemical
production will increase in the warming climate but dynamical
processes tend to reduce near-surface aerosols. The hypothesis
can be confirmed by the increasing temperature (Figures S13−
S15) over East Asia since higher temperature increases gas-
phase reaction rates and oxidant concentrations.55 As SO4

2−

increases, NO3
− decreases because it competes with SO4

2− for
the available NH3 to form ammonium nitrate. Also, increased
precipitation in the warming climate will increase the wet
scavenging efficiency of aerosols, leading to the decreases in
aerosol concentrations. In addition to increases in SO4

2−, OC
also increases in Europe and North America, which offsets the
decreases in other aerosols. The increases in OC are related to
the decreases in relative humidity over Europe and North
America in the future (Figure S20), considering that the
concentration of SOA is negatively correlated with relative
humidity,56 which is also confirmed by the significant negative
correlation between OC and relative humidity in Figure S2.
Over South Asia, climate change will decrease PM2.5
concentrations by 2−5%, associated with the increasing
precipitation. All of the future regional aerosol variances
controlled by the climate change are statistically significant at
the 95% confidence level, except for East Asia under the SSP3-
7.0 scenario.

4. DISCUSSION
Global near-surface aerosol concentrations during 2015−2100
are projected in this study based on a machine learning
approach with input data from a GEOS-Chem simulation,
CMIP6 multi-model simulations, and many other auxiliary data
sets. Impacts from future emission change and climate change
on aerosol variations are analyzed. We found that the impact of
climate change on the future aerosol changes can be
comparable to those driven by changes in anthropogenic
emissions over many regions of the world in the high forcing
scenario, and a warmer climate exerts a stronger modulation on
global aerosols. This study highlights the importance of climate
change in regulating future aerosol variations.

The PM2.5 projections in this study over different regions of
the world under future emission scenarios have been compared
with many previous studies,20,57−59 which are shown in Text
S2 and Table S1. In this study, we use global emissions data
sets for SSP scenarios to predict future aerosol variations.
Considering that the CMIP6 future climate changes are also
projected using the SSP emissions, it is desirable and
appropriate to use the same emissions data sets for aerosols,
along with other forcing agents, that drive the climate change
under each scenario. However, we also note that individual
countries or regions could have more reasonable and adaptive
emission projections that take regional climate and clean air
policies into account. As shown in Text S2, there are large
discrepancies in regional results for China because SSPs do not
consider the clean air policies and recent air quality
improvements in China, leading to biased local emission
estimates in China under SSPs and potential biases in the
machine learning method. In future studies, localized emission
data sets are more desirable in order to better project future air
quality over specific regions.
In addition, the spatial differences in annual mean near-

surface PM2.5 concentrations between the first and last decade
of 2015−2100 from one CMIP6 model (GFDL-ESM4) and
the machine learning method driven by the GFDL-ESM4-
predicted future meteorological parameters are similar to each
other in many regions of the globe (Figure S31), except for
high-latitude and desert regions, where the poor agreement
likely results from the biased prediction of secondary aerosols
(Figure S3), further confirming the good ability of the machine
learning method to predict future aerosols.
Many countries have announced to achieve carbon neutral-

ity by the middle of this century, which is an economy with
net-zero greenhouse gas emissions. SSP1-1.9 is the most
optimistic scenario representing carbon neutrality under
CMIP6, but it is within Tier 2 of the ScenarioMIP
framework.17 The SSP1-2.6 scenario has a similar emission
pathway to that of SSP1-1.9 and can be partly used to
represent the carbon neutrality. Noted that, the pollutant
emissions in 2050 under the SSP1-1.9 are lower than that of
SSP1-2.6, indicating that aerosol concentrations would
decrease faster in the first half of the 21st century under
SSP1-1.9 than that under SSP1-2.6.
Note that there are a number of uncertainties in the

prediction of future near-surface aerosol concentrations over
the world, which could be due to the input data, GEOS-chem
model, climate models, and the machine learning model. First
of all, land use and topography data are fixed at the present-day
conditions during the model prediction, which can also vary
under future climate change. Furthermore, the inconsistency in
CMIP6 emissions over China with the historical MEIC
emission inventory could introduce additional biases to future
aerosol predictions. In addition to the effects of climate change
on aerosols, aerosols also have an impact on climate in multiple
and complex ways through their interactions with radiation and
clouds. Also, we did not consider potential future changes in
fire and biogenic emissions and wind-blown dust in this study,
which could vary under the projected climate change.60,61

Second, the training of the machine learning model uses the
GEOS-Chem results, and therefore, the predicted aerosols
highly depend on the performance of the GEOS-Chem model
in simulating aerosol components, which is further linked to
the aerosol emissions, MERRA-2 reanalysis data, and model
parameterizations. The GEOS-Chem model has a relatively
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low bias in simulating SO4
2− globally (NMB<7%) but

significantly overestimates NO3
− and NH4

+ over the U.S.
(126 and 45%), Europe (127 and 90%), and Asia (269 and
167%).63 The BC and OC concentrations are underestimated
by the model over the U.S. (−7 and −20%), Europe (−25 and
−49%), and China (−56 and −76%).62,63 The bias of the
GEOS-Chem model in simulating aerosols can also result in
biases in aerosol prediction. This uncertainty can be reduced
by training the model with observational data in future studies
if more data are available over the entire globe.
Third, the biases can also arise from uncertainties in climate

model results from CMIP6.64,65 Moreover, the good perform-
ance of the trained RF model in 2010 does not guarantee a
reliable extrapolation of model performance and results in
response to a strong increase in temperature under future
global warming. Besides, the RF model may overfit without
setting a maximum depth of the tree, which requires additional
work on the training data and machine learning model tuning
in the future research. Last but not least, the machine learning
model has relatively large biases in predicting OC and NO3

−

aerosols, especially over high-latitude regions, which need to be
addressed in future studies by considering more aerosol
processes and meteorological factors in the machine learning
model.
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