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• Long-term PM2.5 is essential due to the
coverage deficiency of surface observa-
tions.

• A machine learning model with visibil-
ity andmany auxiliary data inputs is ap-
plied.

• A 1-degree gridded daily PM2.5 dataset
over China for 1980–2019 is con-
structed.

• The model performs well with a high
coefficient of determination and
low bias.

• It will be a promising tool for assessing
related impacts on environment and
climate.
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The lack of long-termobservations and satellite retrievals of health-damagingfine particulatematter in China has
demanded the estimates of historical PM2.5 (particulatematter less than 2.5 μm in diameter) concentrations. This
study constructs a gridded near-surface PM2.5 concentration dataset across China covering 1980–2019 using the
space-time random forest model with atmospheric visibility observations and other auxiliary data. The modeled
daily PM2.5 concentrations are in excellent agreement with groundmeasurements, with a coefficient of determi-
nation of 0.95 and mean relative error of 12%. Besides the atmospheric visibility which explains 30% of total im-
portance of variables in the model, emissions and meteorological conditions are also key factors affecting PM2.5

predictions. From 1980 to 2014, the model-predicted PM2.5 concentrations increased constantly with the maxi-
mum growth rate of 5–10 μg/m3/decade over eastern China. Due to the clean air actions, PM2.5 concentrations
have decreased effectively at a rate over 50 μg/m3/decade in the North China Plain and 20–50 μg/m3/decade
over many regions of China during 2014–2019. The newly generated dataset of 1-degree gridded PM2.5 concen-
trations for the past 40 years across China provides a useful means for investigating interannual and decadal en-
vironmental and climate impacts related to aerosols.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Particulate matter is one of themajor health-damaging components
in the atmosphere, especially those with the aerodynamic diameters
smaller than 2.5 μm (PM2.5). Long-term exposure to PM2.5 can increase
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risks of many adverse health issues, including respiratory and cardio-
vascular diseases, lung cancer and premature death (Crouse et al.,
2012; Pope et al., 2002; Xing et al., 2016; Zhang et al., 2017). The pres-
ence of high concentrations of PM2.5 also reduces atmospheric visibility,
influences the public transportation, and thus adversely affects social
and economic activities (Zhang et al., 2014). These aerosol particles
also influence climate via aerosol-radiation and aerosol-cloud interac-
tions (Boucher et al., 2013; Yang et al., 2020). Through long-range trans-
port, the local environmental and climatic impacts of aerosols near
major source regions can be extended globally (Ren et al., 2020; Wang
et al., 2014).

Aerosol concentrations in China are experiencing great changes in
recent decades. The rapid industrial development and urbanization
were primarily responsible for the increasing tendency of PM2.5 concen-
trations before 2010 (Yang et al., 2016; Cohen et al., 2017). From2013 to
2017, the PM pollution was alleviated, with the national averaged con-
centration reduced by one third, primarily owing to the implementation
of clean air actions in China (Huang et al., 2018). Following the growing
public health concern, many air quality monitoring stations have been
established to measure real-time PM2.5 concentrations since 2013.
However, the measurements are limited to a short temporal coverage
and have uneven spatial distributions (Wang et al., 2019; Zhao et al.,
2020), so they are insufficient to describe the long-term characteristics
of PM2.5 in China. Because the spatiotemporal variation of PM2.5 and its
relationship with changes in emissions, weather and climate can be
used to improve the current understanding of pollution formation and
provide the scientific basis of air quality improvement to policymakers,
it is essential to produce a long-term dataset of gridded surface PM2.5

concentrations based on real observed data in China.
To overcome the spatiotemporal coverage deficiency of surface

PM2.5 observations, satellite remote sensing data have been widely
used to estimate surface PM2.5 concentrations recently (Fang et al.,
2016; Wei et al., 2019). In general, aerosol optical depth (AOD) derived
from satellite has a positive correlationwith near-surface PM2.5 concen-
trations. Based on this, a variety of statistical models, includingmultiple
linear regression (Chelani, 2019), geographically weighted regression
(Ma et al., 2014; Guo et al., 2017), linear mixed-effect model (Zheng
et al., 2016), and two-stage model (Ma et al., 2016; Yao et al., 2019),
have been applied to assess PM2.5. In addition, machine learning has be-
come amodern tool for a regression task nowadays due to its computa-
tional efficiency and state-of-the-art performance (Stafoggia et al.,
2019). Wei et al. (2019) produced PM2.5 concentrations at 1-km resolu-
tion in China for 2016 based on satellite AOD using the space-time ran-
dom forest (STRF) model, with a cross-validation (CV) coefficient of
determination (R2) of 0.85. Li et al. (2017) estimated PM2.5 in 2015
over China using a geo-intelligent deep learning model together with
satellite AOD data, in which the CV R2 increases from 0.42 to 0.88 rela-
tive to the traditional neural network method. However, these esti-
mated PM2.5 data still have some limitations in certain aspects. First of
all, the Moderate Resolution Imaging Spectroradiometer (MODIS) data
were not available until 1999 and Suomi National Polar-orbiting Part-
nership (S-NPP) satellite was launched in 2011. Most of the studies
mentioned above used AOD derived from these two satellites to predict
PM2.5, and consequently the PM2.5 data are not available before 2000
(van Donkelaar et al., 2015; Xue et al., 2019). Additionally, AOD repre-
sents aerosol loading in the entire atmospheric column and its relation-
ship with near-surface PM2.5 concentrations is largely influenced by
planetary boundary layer height, relative humidity, temperature, and
other factors (Liu et al., 2009). Moreover, algorithm bias, signal uncer-
tainty, and cloud contamination induce biases to the PM2.5 estimation
from AOD (Stafoggia et al., 2019; Xiao et al., 2017).

Atmospheric visibility measurements, which have been available for
several decades in China, were demonstrated to be a promising alterna-
tive for estimating near-surface PM2.5 concentrations (Shen et al., 2016).
Li et al. (2020) derived PM2.5 concentrations over North China in 2014
using the combination of visibility observations and GEOS-Chem
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model simulations and reported that the estimated PM2.5 was highly
correlated to surface observations in time and space, with a correlation
coefficient of 0.96 and 0.79, respectively. Liu et al. (2017) estimated his-
torical (1957–1964 and 1973–2014) PM2.5 in China using visibilitymea-
surements and a statistical approach, and found that the model can
accurately estimate PM2.5 concentrations with the CV R2 of 0.71. They
also reported an increasing trend of 1.9 μg/m3/decade averaged over
China during 1957–2014. Due to the better abilities in dealing with
non-linear and complex relationships between variables than tradi-
tional statistical approaches, machine learning methods can also be
used in the visibility-PM2.5 prediction. By using a machine learning
model (the Extreme Gradient Boosting), Gui et al. (2020) constructed
surface PM2.5 concentrations in 2018 over China based on visibility
and meteorological data, which offered the potential in reconstructing
long-term PM2.5 data in China with a machine learning method. Fur-
thermore, in addition to visibility and meteorology, other factors such
as emissions, topography, population and land use data, should be con-
sidered in themachine learningmodel to simulate PM2.5 concentrations
and spatiotemporal distributions.

In this study, we construct a gridded dataset of near-surface PM2.5

concentrations across China covering 1980–2019 using the STRF
model along with atmospheric visibility and other auxiliary data
(e.g.,meteorology, anthropogenic emissions, landuse, topography, pop-
ulation density and spatiotemporal information), which have a longer
time coverage and are more representative of the near-surface aerosols
than the data based on satellite AOD. The performance of the STRF
model in estimating PM2.5 in China is evaluated and the long-term var-
iations of PM2.5 are characterized.

2. Materials and methods

2.1. Datasets

We utilize existing hourly observed surface PM2.5 concentrations
during recent years (2014–2019), long-term atmospheric visibility
and auxiliary data (e.g., meteorological variables, anthropogenic emis-
sions, land use, national population, topography, and geographic and
time variables of observations). The sources and preprocessing of data
are elaborated below.

2.1.1. Surface PM2.5 observations
The hourly ground measurements of PM2.5 concentrations were

attained from the China National Environmental Monitoring Center
(CNEMC, http://www.cnemc.cn) over 2014–2019. Overall, there are
1657 monitoring stations, mostly distributed in metropolis of eastern
China (e.g., the North China Plain, Yangtze River Delta, Pearl River
Delta and Sichuan Basin), while the coverage is very limited in western
China and areas of low-population density (Fig. 1). The data have under-
gone quality control/quality assurance processes to exclude any invalid
values caused by defective reporting and instruments (Barrero et al.,
2015; Pant et al., 2016; Zhai et al., 2019). When calculating daily and
monthly averages, at least 12 hourly values per day and 20 daily values
per month are required, respectively.

2.1.2. Visibility monitoring measurements
The daily atmospheric visibility measurements over China were col-

lected from the National Climatic Data Center (NCDC, https://www7.
ncdc.noaa.gov/CDO/cdoselect.cmd) by averaging at least four synoptic
monitoring data each day. Although there are 1328 visibilitymonitoring
stations (Fig. 1), totally 383 sites have daily visibility data covering
1980–2019 provided by NCDC, which are evenly distributed across
China and are used in this study. To rule out rainy and foggy days, the
days with precipitation > 0 or relative humidity (RH) > 90% are re-
moved from the daily visibility observations. The calculation ofmonthly
visibility averages from daily data follows that of surface PM2.5. Because
the visibility observation transformed from manual observation to

http://www.cnemc.cn
https://www7.ncdc.noaa.gov/CDO/cdoselect.cmd
https://www7.ncdc.noaa.gov/CDO/cdoselect.cmd


Fig. 1. Spatial distributions of PM2.5 (red dots) and atmospheric visibility (orange dots)
monitoring stations in China. The orange dots with black borders are 383 monitoring sta-
tions which have daily visibility covering 1980–2019 provided by NCDC. Topography
(background colored shading, in meters) is from the SRTM DEM at a 90-m spatial resolu-
tion in 2015. (For interpretation of the references to colour in thisfigure legend, the reader
is referred to the web version of this article.)
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automatic monitoring across China around 2013–2014, following the
guideline from China Meteorological Administration (CMA, 2014), in
this study the atmospheric visibility data for 1980–2013 are multiplied
by 0.75 for the calibration against those obtained after 2013.

2.1.3. Auxiliary data
Auxiliary data summarized in Table 1 includemeteorological param-

eters, land use, topography, anthropogenic emissions, population, and
spatiotemporal variables, which are the main factors affecting PM2.5

(Yang et al., 2016; Wei et al., 2020; Zhao et al., 2020). RH is calculated
according to the in-situ surface air temperature (TEMP) and dew
point temperature measurements which are obtained from NCDC. The
remaining meteorological variables, including the boundary layer
height (BLH), surface pressure (SP), evaporation (ET), 10-m wind
speed (WS) and wind direction (WD), are acquired from ERA5 reanaly-
sis (https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/
era5) at a horizontal resolution of 0.25° × 0.25° and temporal resolution
of 6-h covering 1980–2019. Land-use data in year 2015, i.e., 300-m-
resolution land cover and daily normalized difference vegetation
index (NDVI) at a 0.05° × 0.05° resolution are obtained from the
European Space Agency Climate Change Initiative (ESA CCI, http://
maps.elie.ucl.ac.be/CCI/viewer/download.php) and the Advanced Very
High Resolution Radiometer (AVHRR, https://www.ncei.noaa.gov/
Table 1
Details of datasets used in this research.

Dataset Variable Content Sp

PM2.5 PM2.5 Particulate matter ≤ 2.5 μm Sit
VIS VIS Visibility Sit
Meteorology TEMP Surface air temperature Sit

RH Relative humidity
BLH Boundary layer height 0.2
SP Surface pressure
ET Evaporation
WS 10-m wind speed
WD 10-m wind direction

Land use LC Land cover 30
NDVI Normalized Difference Vegetation Index 0.0

Topography TOPO Digital elevation model 90
Emission SO2 Sulfur dioxide 0.5

BC Black carbon
OC Organic carbon

Population POP Population 1 k
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data/avhrr-land-normalized-difference-vegetation-index/access/),
respectively. Topography data were collected from the Shuttle Radar
Topography Mission (SRTM) Digital Elevation Model (DEM) at a 90-
m-resolution for 2015 (https://cgiarcsi.community/data/srtm-90m-
digital-elevation-database-v4-1/). Monthly anthropogenic emissions
of three atmospheric pollutants (e.g., sulfate dioxide (SO2), black carbon
(BC) and organic carbon (OC)) were from the Community Emissions
Data System (CEDS, 1980–1999, http://www.globalchange.umd.edu/
ceds/) and multi-resolution emission inventory for China (MEIC,
2000–2017 with 2018/2019 repeating 2017, http://www.meicmodel.
org/) at a 0.5° × 0.667° spatial resolution. The population density in
2010 was obtained from LandScan at a 1-km-resolution (https://
landscan.ornl.gov/landscan-datasets), which was also considered
when constructing the emission inventories. We also apply the location
of surface monitoring stations (longitude and latitude) and day of the
year (DOY) as spatiotemporal information, with regard to the different
spatial and temporal characteristics of PM2.5.

2.2. Methods

Taking into account of the heterogeneous spatial and temporal dis-
tribution of PM2.5measurements, the STRFmodel, an upgraded Random
Forest (RF) model with consideration of spatiotemporal information
(Wei et al., 2019), is used in this study to produce long-term PM2.5

data. RF is an ensemble learning algorithm on the basis of decision
trees (DT) for classification and regression (Breiman, 2001). DT is a
tree-structured classifier, which is recursively constructed by training
data sets through dynamic programming (Safavian and Landgrebe,
1991). The major steps of RF algorithm (Joharestani et al., 2019) are as
follows:

(a) N samples are collected from the data for training through boot-
strap sampling method for individual trees.

(b) The RF model is built by utilizing the N samples generated from
step (a). The split point of each tree is determined by the best fea-
ture among the randomly selectedproperties, which is capable of
avoiding over-fitting.

(c) Tuning hyperparameters to optimize the performance of the
model with K-fold CV technique.

(d) The estimated value of each input sample is then computed as
the mean regression targets of the trees in the forest.

The following sectionsdescribe our concrete procedures ofmodeling
PM2.5:

Stage1. The PM2.5 observation stations are grouped into 367 cities
and the quality-controlled daily PM2.5 concentrations are averaged for
each city. Considering the mismatch of spatial distribution between
atial resolution Temporal resolution Time period Data source

e Hourly 2014–2019 CNEMC
e Daily 1980–2019 NCDC
e 6 h 1980–2019 NCDC

6 h 1980–2019
5° × 0.25° 6 h 1980–2019 ERA5

6 h 1980–2019
6 h 1980–2019
6 h 1980–2019
6 h 1980–2019

0 m × 300 m – 2015 ESA CCI
5° × 0.05° Daily 2015 AVHRR
m × 90 m – 2015 SRTM
° × 0.667° Monthly 1980–2017 CEDS

MEIC1980–2017
1980–2017

m × 1 km – 2010 LandScan

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
http://maps.elie.ucl.ac.be/CCI/viewer/download.php
http://maps.elie.ucl.ac.be/CCI/viewer/download.php
https://www.ncei.noaa.gov/data/avhrr-land-normalized-difference-vegetation-index/access/
https://www.ncei.noaa.gov/data/avhrr-land-normalized-difference-vegetation-index/access/
https://cgiarcsi.community/data/srtm-90m-digital-elevation-database-v4-1/
https://cgiarcsi.community/data/srtm-90m-digital-elevation-database-v4-1/
http://www.globalchange.umd.edu/ceds/
http://www.globalchange.umd.edu/ceds/
http://www.meicmodel.org/
http://www.meicmodel.org/
https://landscan.ornl.gov/landscan-datasets
https://landscan.ornl.gov/landscan-datasets


Fig. 2. Density scatterplot of (a) model fitting for the STRF model from 2014 to 2018 (N=372,596) and (b)model prediction power in 2019 (N=86,871) at the daily scale across China.
The gray and red solid line is the 1:1 line and linear regression line, respectively. Statistical metrics including the correlation of determination (R2), the rootmean square error (RMSE), the
mean absolute error (MAE) and the mean relative error (MRE) are noted at the top left of each panel. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 3. Importance scores (y-axis on the left) of independent PM2.5-related variables (OC,
BC and SO2 are for anthropogenic emissions) for the STRF model (blue bars) and
correlation coefficients (y-axis on the right) between observed PM2.5 concentrations and
individual variables (black dots). Note that the concentric circles represent that
correlation coefficients are statistically significant at the 95% confidence level. (For
interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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visibility and PM2.5 sites, we choose±1° around the geographic location
of each city of PM2.5 observation as a target area and average the corre-
sponding visibility, in-situ TEMP and RHwithin the area. Totally 360 out
of the 367 citieswith PM2.5 observations have visibility siteswithin their
target areas. The other auxiliary data use values at thenearest grid to the
city of PM2.5 observation. We integrate all data but remove days with
missing or invalid data for each geographic location.

Stage 2. The input datasets from 2014 to 2018 are used for model
training. The hyperparameters applied in the machine learning
model include n_estimators (the number of decision trees in the for-
est), min_samples_split (the minimum of samples required to split a
node), max_features (the maximum number of features to consider
when splitting a node), max_depth (the maximum depth of each de-
cision tree) and bootstrap (an optional setting for sampling data
with or without replacement). During the hyperparameter tuning
to construct an optimized STRF model, the K-fold CV technique is ap-
plied to evaluate the skill of the STRF model. The K-fold CV splits the
whole training data randomly into K subsets. In each round of CV
among K rounds, K-1 subsets are used for fitting the model and the
remaining subset is for validation, where K equals 10 in this study.
The best hyperparameters of the model are 500, 4, “sqrt” (i.e., the
maximum of features considered equals square root of all the fea-
tures), “None” (i.e., the tree expands until the samples of each node
are less than min_samples_split) and “Ture” (i.e., to turn on the
boostrap option), respectively, for n_estimators, min_samples_split,
max_features, max_depth and bootstrap. The average scores are
used to identify best hyperparameters for the model. Several statisti-
cal metrics, including R2, mean absolute error (MAE), root mean
square error (RMSE) and mean relative error (MRE), are computed
tomeasure the performance of the STRFmodel. Subsequently, the re-
lationships between PM2.5 concentrations and each independent pa-
rameter are investigated.

Stage 3. Using the regularly spaced visibility ground observation
stations, we then process the daily visibility, meteorological data,
land use, topography, anthropological emissions and population
data from 1980 to 2019 according to the locations of valid visibility
monitoring sites. The specifics of this procedure are the same as in
stage 1. The long-term daily surface PM2.5 concentrations over visi-
bility sites during 1980–2019 are generated by the trained STRF
model with input data of daily visibility, meteorological data, land
use, topography, anthropological emissions, population, DOY and
geographic location of visibility sites. Finally, the modeled data are
interpolated into 1-degree grids over 1980–2019 in China using the
bilinear interpolation method.
4

3. Results

3.1. Model performance and importance of input variables

Fig. 2a presents the density scatterplot of fitting performance of the
STRF model. The validation data of daily surface PM2.5 observations for
model evaluation are 372,596 in total across China during 2014–2018.
The STRF model slightly underestimates the PM2.5 concentrations,
with a slope of 0.86 in the regression model. The values of R2, MAE,
RMSE and MRE are 0.95, 5.02 μg/m3, 8.92 μg/m3 and 12%, respectively,
indicating a good agreement between the estimated PM2.5 and surface
observations.

The prediction power of the STRFmodel is shown in Fig. 2b. The pre-
dicted daily PM2.5 concentrations in 2019 are evaluated against 86,871
daily surface PM2.5 measurements over China. The STRF model well re-
produces the observational data with R2, MAE, RMSE, and MRE of 0.96,
4.10 μg/m3, 7.12 μg/m3, and 13%, respectively. These statistical metrics
demonstrate that the STRF model is a promising tool to estimate spa-
tially coherent PM2.5 concentrations that are crucial to study the long-
term variability of PM2.5 over China.

Fig. 3 shows the importance scores of 15 independent parameters
used in the STRF model, which are calculated with all the input data



Fig. 4. Spatial distribution of theperformance statistics of the STRFmodel according to (a) R2 (unitless), (b) RMSE (μgm−3), (c)MAE (μgm−3) and (d)MRE (%) in 2014–2019 across China.
The box-outlined areas in (a) are the North China Plain (NCP; 114–120°E, 35–41°N), the Fenwei Plain (FWP; 106–111°E, 33–35°N, and 109–114°E, 35–37°N), the Yangtze River Delta
(YRD; 118–122°E, 29–34°N), the Pearl River Delta (PRD; 112–115°E, 21–25°N) and the Sichuan Basin (SCB; 103–108°E, 28–33°N).

H. Li, Y. Yang, H. Wang et al. Science of the Total Environment 765 (2021) 144263
considering both spatial and temporal variations, and the correlation
coefficients (R) between these parameters and observed PM2.5 concen-
trations are also provided. It is apparent that atmospheric visibility is the
dominant parameter among all input variables, with an individual im-
portance of 30% to the model, and it has a strong negative correlation
with PM2.5 observations (R=−0.53). TEMP andBLH are negatively cor-
related with PM2.5, with the magnitude of R larger than 0.2. In contrast,
all anthropogenic emissions and ET are positively correlatedwith PM2.5,
with R in the range of 0.2–0.4. Except forWD and RH, R between the se-
lected variables and PM2.5 concentrations is statistically significant at
the 95% confidence level. In addition, emissions of OC and BC, TEMP,
BLH and RH also significantly affect the PM2.5 estimates, with individual
contributions of 5–10% to the STRF model importance score.
Fig. 5. The daily performance statistics of the STRF model averaged over China regarding to (

5

3.2. Spatial and temporal validation

Fig. 4 shows the spatial validation of estimated PM2.5 concentrations
at city level across China during 2014–2019. In general, the daily PM2.5

concentrations are well reproduced in most cities of China. Almost all
cities have R2 higher than 0.9. The average values of RMSE and MAE
are 6.24 and 4.04 μg/m3, respectively, with high values over North
China Plain (NCP), Fenwei Plain (FWP) and northwestern China.
About 87% (75%) of the cities have RMSE (MAE) less than 10 μg/m3

(5 μg/m3). The average of MRE is about 10% and more than 90% of the
cities have MRE lower than 15%, particularly in east and south of China.

Fig. 5 shows the temporal model validation based on daily PM2.5

concentrations averaged over China in 2014–2019. The spatial
a) R2 (unitless), (b) RMSE (μg m−3), (c) MAE (μg m−3) and (d) MRE (%) in 2014–2019.



Fig. 6. Spatial distributions of observed surface PM2.5 concentrations at 367 sites (a, d, g, j), PM2.5 estimates from STRFmodel at 383 sites (b, e, h, k) and 1-degree gridded concentrations of
PM2.5 estimates (c, f, i, l) in 2015–2019 across China averaged over December–January–February (DJF), March–April–May (MAM), June–July–August (JJA) and September–October–No-
vember (SON). Correlation coefficient (R) and the normalizedmean bias (NMB=∑ (Griddedsite− Observationsite) /∑Observationsite × 100% or NMB=∑ (Griddedsite−Modelsite) /
Modelsite × 100%) between gridded concentrations and PM2.5 observations/model estimates are given at the bottom left of panels in left and middle columns.
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distribution of modeled PM2.5 is highly correlated with observed values
with 88% of the days having R2 higher than 0.9. More than 80% and 90%
of the days have RMSE and MAE lower than 10 μg/m3, with average
values of 6.18 and 4.14 μg/m3, respectively. The average of MRE is 11%,
ranging from 5% to 26%, and 83% of the days have MRE lower than
15%. It is noteworthy that RMSE and MAE are higher in winter and
lower in summer than other seasons. It is because the seasonal peak
PM2.5 concentrations usually occur in winter and trough occurs in sum-
mer over China, leading to larger absolute biases in cold season, which
can be confirmed by the weaker seasonality of MRE.

3.3. Spatial distribution and seasonal variation of modeled PM2.5

The observed PM2.5 concentrations are typically higher in eastern
China and lower in other less polluted regions. The modeled PM2.5 con-
centrations at the 383 available visibility monitoring stations during
2015–2019 across China completely reproduce this spatial pattern
(Fig. 6). Compared with the surface observations of PM2.5, the modeled
PM2.5 based on visibility and other auxiliary data has a greater coverage
over China, especially over the less polluted regions and areas of low
6

popu lation density, which benefits the construction of gridded
PM2.5 data.

After being interpolated into the 1-degree gridded data using the bi-
linear interpolationmethod, the seasonal pattern ofmodeled PM2.5 con-
centrations over 2015–2019 is also presented in Fig. 6. In eastern China,
the PM2.5 concentrations show peak in winter and trough in summer,
with seasonal mean values above 80 μg/m3 overmost regions of eastern
China in winter and around 40 μg/m3 in summer, as a consequence of
heating demands and unfavorable meteorological conditions in cold
season and an efficient wet removal of aerosols in summer (Yang
et al., 2017a, 2017b). In northwestern China, the severest particle pollu-
tion occurs in spring rather than winter since dust emissions increase
dramatically and sandstorms occur frequently in these desert/arid
areas in spring (Aili and KimOanh, 2015; Qiu et al., 2001). The dust var-
iation is mainly driven by changes in wind speed and land cover (Yang
et al., 2017c), which have been considered in the model. The overall R
between the gridded PM2.5 concentrations and observations are higher
than 0.80,while the values of normalizedmean bias (NMB) are less than
13%, suggesting that the constructed gridded PM2.5 has an excellent rep-
resentation of surface observations.



Fig. 7. Time series of annual mean (purple lines) and seasonal means of modeled PM2.5 (colored solid lines) from 1980 to 2019 and corresponding observed PM2.5 (colored dashed lines)
from2015 to 2019 averagedover China andfive selected regions, includingNCP, FWP, PRD, YRD and SCB.Note that themodeledmean is the average over all 1-degree gridswhile observed
mean is only over stations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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3.4. Long-term variation of modeled PM2.5

Using the trained STRF model along with long-term visibility and
other auxiliary data, surface PM2.5 concentrations during 1980–2019
over China can be reproduced, as shown in Fig. 7. As in Fig. 6, PM2.5 con-
centrations are highest in winter and lowest in summer for the average
over the whole China and five polluted areas of China, including NCP,
FWP, the Yangtze River Delta (YRD), the Pearl River Delta (PRD) and
the Sichuan Basin (SCB). NCP has the highest average PM2.5 concentra-
tions among the five sub-regions, with an annualmean concentration of
75.11 μg/m3, followed by FWP (68.30 μg/m3), SCB (66.07 μg/m3), YRD
(59.80 μg/m3) and PRD (52.09 μg/m3) from 1980 to 2013. Comparing
to the surface observations (2015–2019), the model matches well the
annual and spatial mean PM2.5 concentrations.

Overall, the mean PM2.5 shows a continuous increase during
1980–2013, mainly due to increases in anthropogenic emissions (Yang
et al., 2016), and a rapid decrease during 2013–2019 resulting from
the clean air actions in China (Zheng et al., 2018). Although PM2.5 con-
centrations in all seasons and sub-regions show increasing trends in
the first three decades after 1980 and decreasing trends from the
2010s, the peaks arrive at different years for different seasons and re-
gions. For example, the wintertime maximum of national averaged
PM2.5 concentrations appears in 2014 (contributed by January and
7

February of 2014 and December of 2013), while the summertimemax-
imum occurs in 2011. In NCP, FWP and YRD, the annual PM2.5 concen-
trations reach their maximum in 2013–2014, while the peak values
show up in 2007 and 2010 over PRD and SCB, respectively. Note that
the PM2.5 concentrations over FWP have a high value in 2006, which
ismore likely a result of interannual variation and does not affect the in-
creasing trend between 1980 and 2013.

3.5. Effect of clean air actions in China

From 1980–1984 to 2010–2014, the modeled 1-degree PM2.5 con-
centrations increased in eastern China, with a maximum increase of
more than 30 μg/m3 occurred in Shanxi province,while PM2.5 decreased
in western China (Fig. 8). Since 2014, due to the clean air actions, PM2.5

concentrations have decreased significantly throughout China. The de-
creases in PM2.5 concentrations from 2010–2014 to 2015–2019 are in
a similar magnitude to the increases during the past 30 years, with the
maximum decrease of about 30 μg/m3 over NCP.

Fig. 8e and f show the spatial distributions of linear trends of gridded
PM2.5 concentrations for 1980–2014 and 2014–2019, respectively. From
1980 to 2014, the PM2.5 concentrations had increased at a maximum
rate of 5–10 μg/m3/decade in eastern China. As a result of the clean air
actions, the PM2.5 concentrations have decreased substantially in recent



Fig. 8. Spatial distributions of differences inmodeled 5-yearmean station PM2.5 concentrations and 1-degree gridded PM2.5 concentrations between 1980–1984 and 2010–2014 (a, c) and
between 2010–2014 and 2015–2019 (b, d), respectively. Linear trends of gridded PM2.5 concentrations (μg/m3/decade) for 1980–2014 (e) and 2014–2019 (f). Only areas with trends
passing significant test at the 99% confidence level are drawn in e and f.
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years, with a reduction rate of over 50 μg/m3/decade in the North China
Plain and 20–50 μg/m3/decade in many regions of China, which is ap-
proximately one order of magnitude faster than the increasing rate
over 1980–2014 in eastern China. It is also noted that an increasing
trend of PM2.5 occurred over northwestern China in 2014–2019,
which is likely caused by interannual variations in dust emissions.

4. Conclusion and discussions

In this study, the STRF machine learning model is trained with the
input of atmospheric visibility observations, meteorology, land use, to-
pography, anthropogenic emissions, population, and relevant spatio-
temporal information to construct a 1-degree gridded near-surface
daily PM2.5 concentration dataset from 1980 to 2019. This spatiotempo-
rally coherent historical PM2.5 dataset is useful to study the long-term
aerosol variations over China.

The PM2.5 estimates are well correlated with near-surface observa-
tions over China for 2014–2018, with a relatively high R2 of 0.95 and
low values of MAE of 4.84 μg/m3, RMSE of 8.61 μg/m3 and MRE of 12%.
Among the 15 selected individual variables, atmospheric visibility is
the dominant factor, which accounts for 30% of the total importance
score in estimating PM2.5 by the model. Besides, emissions (e.g., OC
and BC) and meteorological conditions (e.g., TEMP, BLH and RH) are
8

also essential factors, each explaining 5–10% of the total importance.
The constructed PM2.5 concentrations show high values in eastern
China and low values in the less polluted regions, such as western
China, and seasonal peak in winter and trough in summer, which have
very similar spatiotemporal patterns to observations.

From 1980 to 2014, the model-predicted PM2.5 concentrations in-
creased constantly over eastern China, where anthropogenic emissions
were increasing during this time period, with the maximum growth
rate of 5–10 μg/m3/decade. After the implementation of the clean air ac-
tions, the air quality across China has improved enormously during
2014–2019, with a decreasing rate over 50 μg/m3/decade for PM2.5 con-
centrations in the NCP and 20–50 μg/m3/decade over many regions of
China, which is approximately one order of magnitude faster than the
increasing rate during 1980–2014.

Numerous previous studies have estimated PM2.5 concentrations in
China based on satellite-retrieved column AOD. However, due to the
limitations in time coverage and satellite retrieval algorithms, the esti-
mated PM2.5 concentrations are only available after 2000 and not repre-
sentative for the surface. With the long-term visibility and auxiliary
data, the machine learning estimated PM2.5 data is constructed for the
recent four decades (1980–2019). The newly produced 1-degree
gridded daily PM2.5 dataset in China is useful to complement satellite-
based PM2.5 products and provide information over remote areas
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where PM2.5monitoring stations are scarce. As a consequence, our long-
term1-degree gridded PM2.5 dataset can be a practical tool for analyzing
the long-term variation of aerosols in China and assisting air quality and
climate models to assess related impacts on environment and climate.

There are complex correlations between the input variables, but the
covariations of these variables are hard to be considered in the tradi-
tional statistical methods. For example, the R is 0.45 between boundary
layer height and wind speed, 0.48 between population and SO2 emis-
sion, and 0.30 between surface air temperature and relative humidity.
Due to the better abilities in dealing with non-linear and complex rela-
tionships between variables, machine learning method is used in this
study. However, there are a few uncertainties associated with the re-
sults in this study. For example, uncertainties exist in the PM2.5 and vis-
ibility observations, meteorological reanalysis data, and the prescribed
anthropogenic aerosol emissions. Additionally, some auxiliary data
have spatial variation but are lack of temporal variation. For example,
land use, topography and population density are only for one specific
year and the aerosol and precursor emissions are monthly mean values.
The constructed daily PM2.5 concentrations could be biased without
considering daily variation of these variables. Due to the fact that Ti-
betan Plateau and parts of western China have less dense observation
stations compared to eastern China, uncertainties can be induced in
the model training and data interpolation. Therefore, the constructed
dataset of gridded PM2.5 concentrations is likely to be less reliable in
western China than in eastern China. Moreover, in processing the
input data, days with precipitation and high RH were removed, which
could cause a high bias in calculating the annual average of PM2.5. The
potential model dependence of PM2.5 simulation warrants a further
study with multiple machine learning models and more input data.
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