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2015–2020 in cities in YRD.

• 2019–2020 changes in meteorology re-
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 We quantify themeteorological influences on daily variations and trends ofmaximum daily 8-h average ozone (MDA8
O3) concentrations by using multiple linear regression (MLR) and Lindeman, Merenda, and Gold (LMG) approaches.
Different from previous region-based studies, we pay special attention to meteorological influences at city scale.
Over 2015–2019, daily changes in key meteorological parameters could explain 47%–74% of the observed daily var-
iations in summertime MDA8 O3 concentrations in Yangtze River Delta (YRD) and four cities (Shanghai, Nanjing,
Hangzhou, and Hefei), with RH being the top driver. Over years of 2015–2020, daily concentrations of MDA8 O3 ob-
tained fromMLR equations (MDA8O3_MLR) of the local cities always had better performance than those of YRD. Com-
paredwith the observed dailyMDA8O3 in June–July–August (JJA) over the studied period, dailyMDA8O3_MLR of the
local cities (of YRD) had correlation coefficients of 0.73 (0.63), 0.75 (0.74), 0.79 (0.78), and 0.76 (0.73) in Shanghai,
Nanjing, Hangzhou, and Hefei, respectively, and the MDA8O3_MLR of the local cities (of YRD) captured 54% (17%),
63% (51%), 52% (27%) of the observed O3-polluted days (days with MDA8 O3 concentration exceeding 160 μg m−3)
in Shanghai, Nanjing, and Hangzhou, respectively. The meteorologically driven trends (Trend_Met) in MDA8 O3 were
calculated using the established MLR equations. Over 2015–2019, the observed trends (Trend_Obs) and Trend_Met in
MDA8 O3 were mostly positive in YRD, Nanjing, Hangzhou, and Hefei. In Shanghai, Trend_Obs, Trend_Met, and an-
thropogenically driven trend (estimated as Trend_Obs minus Trend_Met) of MDA8 O3 in JJA over 2015–2019 were
−1.3,+1.0, and−2.3 μgm−3 y−1, respectively, indicating that the emission controlmeasures alleviatedO3 pollution
in this city. Our results suggest that it is necessary to establish MLR equations at city scale to account for the role of
meteorology in the actions of O3 pollution control.
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1. Introduction

Ground-level ozone (O3) is an air pollutant generated by photochemical
oxidation of nitrogen oxides (NOx) and volatile organic compounds (VOCs)
in the atmosphere in the presence of sunlight. Exposure to high levels of am-
bient O3 adversely affects both human health (Yin et al., 2017) and vegeta-
tion growth (Yue et al., 2017). In 2013, the Chinese government launched
the ‘Air Pollution Prevention and Control Action Plan’ to improve air qual-
ity in China. Since then, PM2.5 concentrations have decreased drastically
due to stringent emission control measures, while O3 pollution has been
getting worse (Li et al., 2019a, 2019b; Zhai et al., 2019). Understanding
the mechanisms for the variations of O3 is important for O3 pollution con-
trol, especially in the Yangtze River Delta (YRD), one of the largest eco-
nomic zones in China. According to the ‘Environmental and Ecological
Status Bulletins in China’ (https://www.mee.gov.cn/hjzl/; last access: 8
November 2021), the 90th percentile concentration of the maximum
daily 8-h average (MDA8) O3 averaged over YRD increased largely from
163 μg m−3 in 2015 to 180 μg m−3 in 2019. The observed summer
(June–July–August, JJA) mean MDA8 O3 concentration increased at a
rate of 1.6 ppb y−1 over YRD during 2013–2019 (Li et al., 2020).

Concentrations of O3 are influenced by anthropogenic emissions and
meteorological conditions. By using the Weather Research and Forecasting
(WRF)-CommunityMultiscale Air Qualitymodeling system (CMAQ)model,
Liu andWang (2020) found that the changes in summerMDA8O3 in Shang-
hai due to changes in anthropogenic emissions andmeteorologywere about
+8.9 and +2.1 ppb in 2017 relative to 2013, respectively. They also re-
ported that the changes in wind dominated among meteorological factors
that increased MDA8 O3 in Shanghai over 2013–2017. By using the global
3-D chemical transport model GEOS-Chem, Dang et al. (2021) conducted
sensitivity simulations by fixing anthropogenic emissions/meteorological
fields at 2012 levels, and found that the changes in anthropogenic emissions
andmeteorology contributed 0.23 ppb y−1 (13%) and 1.47 ppb y−1 (84%),
respectively, to the trend of simulated MDA8 O3 in YRD in JJA during the
Clean Air Action period of 2012–2017. Their analyses by using the
Lindeman, Merenda, and Gold (LMG) method showed that the changes in
10-m wind speed and relative humidity explained, respectively, 40% and
29% of the simulated interannual variations of MDA8 O3 in JJA over YRD
in the simulation with changes in meteorological parameters alone (Dang
et al., 2021). By using a stepwise multiple linear regression (MLR) model,
Han et al. (2020) showed that meteorology contributed to 41% of the ob-
served increases in summer O3 averaged over YRD over 2013–2018; the
MLR could explain 51% of daily variations in observed surface ozone in
which the change in relative humidity was the dominant meteorological
driver. Based on the reanalyzed meteorological data and the observed
MDA8 O3 concentrations, Chen et al. (2020a) reported by using a MLR ap-
proach that the summer mean anthropogenic-driven and meteorology-
drivenMDA8O3 trends accounted for, respectively, 78% and 22%of the ob-
servedMDA8O3 trend in YRDover 2014–2018. Li et al. (2020) showed also
by a MLR approach that the observed, meteorologically driven, and anthro-
pogenically driven summerMDA8O3 trends were 1.7, 0.2, and 1.5 ppb y−1,
respectively, in YRD from 2013 to 2017, and the changes in surface air rel-
ative humidity, 10-m zonal wind, and 10-m meridional wind explained
80% ofmonthly variability inMDA8O3 in YRD (Li et al., 2019a). These pre-
vious studies generally considered the whole of YRD region, which could
not account for the spatial heterogeneity in the characteristics of the mete-
orological influencewithin the YRD. In addition, these existing studies were
mostly focused on the trends of summer mean ozone and did not examine
for individual months (i.e., June, July, and August). In JJA, with the
march of the East Asian summermonsoon, meteorological conditions for in-
dividual months are expected to be different.

In this study, our aims are (1) to quantify the meteorological influence
on daily variations and trends of summertime O3 in the YRD region over
2015–2019, (2) to calculate the relative contributions of key meteorologi-
cal parameters by developing MLRmodel and using LMG approach in com-
bination, (3) to compare the characteristics of meteorological influences on
summertime (June, July, August, and JJA) MDA8 O3 concentrations in
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individual cities with those in the whole of YRD, and (4) to compare the
characteristics of meteorological influences in individual months (June,
July, and August) with those in the whole summer. The cities of Shanghai,
Nanjing, Hangzhou and Hefei were selected as representative cities of the
four sub-regions (i.e., Shanghai city, Jiangsu Province, Zhejiang Province,
and Anhui Province) in YRD. This paper is organized as follows. Section 2
describes data and methods, including the studied area, observed O3 con-
centrations, meteorological data, data preprocessing, MLR model, and
LMG method. Section 3.1 presents spatiotemporal variations of observed
summertime MDA8 O3 concentrations in YRD during 2015–2020.
Section 3.2 shows key meteorological parameters that drove the daily var-
iations of MDA8 O3 in YRD and four cities and the performance of MLR
equations in different regions/time scales. Sections 3.3 and 3.4 show, re-
spectively, impacts of meteorological parameters on yearly variations and
trends of MDA8 O3 in YRD and four cities. The conclusions and discussions
are summarized in Section 4.

2. Data and methods

2.1. Observed concentrations of O3

This study is focused on 27 cities in the Yangtze River Delta city cluster,
including Shanghai, 9 cities (Nanjing, Suzhou, Nantong, Yangzhou, Wuxi,
Changzhou, Zhenjiang, Taizhou, and Yancheng) in Jiangsu Province, 9 cit-
ies (Hangzhou, Ningbo, Wenzhou, Shaoxing, Huzhou, Jiaxing, Taizhou,
Zhoushan, and Jinhua) in Zhejiang Province, and 8 cities (Hefei, Wuhu,
Maanshan, Tongling, Anqing, Chuzhou, Chizhou, and Xuancheng) in
Anhui Province. The spatial distributions of 27 cities with observed O3 con-
centrations are shown in Fig. 1.

The real-time hourly concentrations of observed O3 for 27 cities of the
YRD during 2015–2020were taken from the public websites of the Chinese
Ministry of Ecology and Environment (MEE) (https://www.mee.gov.cn;
last access: 8 November 2021) and archived at https://quotsoft.net/air/
(Wang, 2021; last access: 8 November 2021). Until August 2018, O3 con-
centrations reported byMEEwere in the unit of μg m−3 under the standard
state of 273 K and 1013 hPa. Starting in September 2018, the reported O3

concentrations were in the same unit under the reference state of 298 K
and 1013 hPa. To facilitate the analysis of long time series, we have con-
verted post-August 2018 O3 concentrations to the standard state. The
MDA8 O3 concentration was calculated according to the data statistics re-
quirements of Technical regulation for ambient air quality assessment (on
trial) (HJ633-2013) (Chinese Ministry of Ecology and Environment,
2013). The 8-h moving averaged concentration was calculated in each
day if the valid hourly values were more than 6 h during the 8 h. The
MDA8 O3 concentration was the maximum of the 8-h moving averaged
concentrations with more than 14 valid values in each day. The regional
(Jiangsu, Zhejiang, Anhui Province, or the YRD) mean MDA8 O3 was com-
puted if more than 75% of the total city sites in the studied region had valid
MDA8 O3.

2.2. Reanalyzed meteorological data

Meteorological fields for 2015–2020 were obtained from Version 2 of
Modern Era Retrospective-analysis for Research and Application
(MERRA-2) produced by the NASA Global Modeling and Assimilation Of-
fice (GMAO). TheMERRA-2 data used in this study have a spatial resolution
of 0.5° × 0.625°. The meteorological parameters are listed in Table 1,
which include 2-meter air temperature (T2), surface air relative humidity
(RH), sea level pressure (SLP), daily total precipitation (PR), daily surface
incoming shortwave flux (SW), planetary boundary layer height (PBLH),
total column cloud cover (TCC), wind speed at 850 hPa (WS), east-west
wind direction indicator at 850 hPa (EW = U/WS，where U is zonal
wind at 850 hPa), and north-south wind direction indicator at 850 hPa
(NS = V/WS, where V is meridional wind at 850 hPa). Except for relative
humidity and wind, for which the temporal resolution is 3 h, other meteo-
rological parameters have a temporal resolution of 1 h.

https://www.mee.gov.cn/hjzl/;
https://www.mee.gov.cn
https://quotsoft.net/air/


Fig. 1. Spatial distribution of 27 city sites with observed O3 concentrations in YRD, including Shanghai (covered in orange), 9 cities in Jiangsu Province (purple), 9 cities in
Zhejiang Province (green), and 8 cities in Anhui Province (pink).
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Both MDA8 O3 concentrations and meteorological parameters were re-
gionally averaged over each city or YRD to achieve spatial consistency. The
MDA8 O3 concentrations for a city or YRD were obtained by averaging the
observed O3 concentrations from all the monitoring stations in the city or
YRD. Considering the horizontal resolution of MERRA-2, the studied re-
gions were assumed to be rectangular, so cities of Shanghai (31.0–31.5°N,
120.7–121.9°E), Nanjing (32.0–32.5°N, 118.2–119.4°E), Hangzhou
(29.5–30.5°N, 118.8–120.7°E), and Hefei (31.5–32.0°N, 116.9–117.5°E)
covered 6, 6, 12, and 4 grid cells, respectively. The meteorological param-
eters for a city were calculated by averaging over the grids corresponding
to the city. The meteorological parameters for YRD were the average over
the 67 grids in the YRD city cluster (27 cities).

2.3. Statistical analysis of the influence of meteorological parameters on MDA8
O3 concentrations

2.3.1. Meteorological influences on daily variations of MDA8 O3 concentrations
Weaimed to obtainmeteorologically driven daily variations of summer-

time MDA8 O3 concentrations for years of 2015–2019 considering either
Table 1
Meteorological parameters considered in the statistical analysis.

Independent
variable

Meteorological parameter Abbreviation

x1 2-meter air temperature (°C) T2
x2 Surface air relative humidity (%) RH
x3 Sea level pressure (hPa) SLP
x4 Daily total precipitation (mm) PR
x5 Daily surface incoming shortwave flux (W m−2) SW
x6 Planetary boundary layer height (m) PBLH
x7 Total column cloud cover (%) TCC
x8 Wind speed at 850 hPa (m s−1)a WS
x9 East-west wind direction indicator sinθ (dimensionless)b EW
x10 North-south wind direction indicator cosθ

(dimensionless)b
NS

a Calculated from the horizontal wind vectors (U, V).
b θ is the angle of the horizontal surface wind vector counterclockwise from the

east. EW and NS are calculated by EW = U/WS and NS = V/WS, respectively,
where U, V, andWS are zonal wind (m s−1, positive indicates westerly), meridional
wind (m s−1, positive indicates southerly), and wind speed (m s−1) at 850 hPa. EW
and NS are dimensionless.

3

the average of YRD or in individual cities of Shanghai, Nanjing, Hangzhou,
and Hefei. Stepwise linear regressions between daily observed MDA8 O3

concentrations and daily meteorological parameters (Table 1) were per-
formed. This approach has been used extensively to describe the relation-
ship between meteorology and air quality (Shen et al., 2015; Otero et al.,
2018; Yang et al., 2019). MLR is in the following form:

y ¼ β0 þ ∑
N

k¼1
βkxk þ ɛ

where y is the observed daily MDA8 O3 concentrations, xk is one of the N
meteorological parameters listed in Table 1, and β0 is the intercept term.
The regression coefficients βk for the k-thmeteorological parameter was de-
termined by a stepwise method to add and delete terms to obtain the best
modelfit. The ɛ is the residual term. Note that we did a screening of the me-
teorological parameters before reading them into the model. If the correla-
tion coefficient between the observed MDA8 O3 concentrations and a
meteorological parameter in Table 1 was statistically significant at the
95% confidence level in the studied region during 2015–2019, this meteo-
rological parameter would be retained. Stepwise linear regression shows
whether an independent variable has significant effect on the dependent
variable according to the t-test. If P < 0.05, the independent variable was
added; otherwise, the independent variable was excluded. The threshold
of 10 for the variance inflation factor (VIF) was used to minimize the influ-
ences of correlations between the reserved meteorological parameters
(Kutner et al., 2004). The adjusted coefficient of determination (R2) of an
equation quantifies the proportion of the dependent variable variability
that can be explained by the independent variable variability. In this
study, meteorological parameters retained in the MLR equation are called
as keymeteorological parameters. R2 represents the proportion of observed
daily variations in MDA8 O3 explained by daily variations in key meteoro-
logical parameters during 2015–2019.

Furthermore, to quantify the relative contributions of key meteorologi-
cal parameters to the observed daily variations in MDA8 O3 concentrations
in the studied regions for years of 2015–2019, the Lindeman, Merenda, and
Gold (LMG) method (Grömping, 2006) was applied. The relative contribu-
tions were calculated by using daily observedMDA8 O3 concentrations and
key meteorological parameters as inputs of the software package named
‘relaimpo’. This approach has been used in many studies to estimate the
relative contributions of predictors to the variations of cloud radiative
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forcing and aerosol optical depth (Xu et al., 2015; Yang et al., 2016; Che
et al., 2019).

Once the MLR equation is established using daily parameters (observed
MDA8 O3 concentrations and meteorological parameters) of 2015–2019,
daily MDA8 O3 concentrations in each of the studied regions (YRD, cities
of Shanghai, Nanjing, Hangzhou, and Hefei) in summers of 2015–2019
can be obtained by substituting the corresponding daily meteorological pa-
rameters into the regression equations, which will be referred to as
MDA8O3_MLR hereafter. Daily MDA8O3_MLR for summertime of year
2020 will then be ‘predicted’. Correlation coefficient (r), mean bias (MB),
and normalized mean bias (NMB) between the observed daily MDA8 O3

concentrations (MDA8O3_OBS) and daily MDA8O3_MLR over 2015–2020
were calculated to evaluate the performance of MLR equations.
2.3.2. Meteorological influences on yearly variations and trends of MDA8 O3

concentrations
Based on the daily MDA8O3_MLR for 2015–2020, the meteorologically

driven yearly changes in MDA8 O3 concentration (ΔMDA8O3_Met) can be
calculated. It should be noted that ΔMDA8O3_Met in this paper refers to
the change in MDA8 O3 concentration driven by meteorology relative to
the previous year. For example, relative to June of 2019, the
ΔMDA8O3_Met in June of 2020 can be calculated as:

ΔMDA8O3_Met ¼ �MDA8O3_MLR June, , 2020ð Þ− �MDA8O3_MLR June, 2019ð Þ
¼ 1

D
∑D

i¼1 ∑n
k¼1βkxk ið Þ_June_2020

� �
−
1
D
∑D

i¼1 ∑n
k¼1βkxk ið Þ_June_2019

� �

where D and n represent the days in the month or in JJA and numbers
of meteorological parameters retained in the MLR equation, respectively.
xk(i)_June_2019 and xk(i)_June_2020 represent the k-th meteorological parameter
on day i in June of 2019 and in June of 2020, respectively. Relative contri-
bution of each key meteorological parameter to ΔMDA8O3_Met was quan-
tified by (1D∑

D
i¼1βkxk ið Þ June 2020− 1

D∑
D
i¼1βkxk ið Þ June 2019)/ΔMDA8O3_Met.

In addition, themeteorologically driven trend ofMDA8O3 concentrations
(Trend_Met) for years of 2015–2019 was calculated by substituting meteoro-
logical data into the developed MLR equation and by linear fitting of the five
mean values (1D∑

D
i¼1 ∑n

k¼1βkxk ið Þ t 2015
� �

, 1
D∑

D
i¼1 ∑n

k¼1βkxk ið Þ t 2016
� �

,
1
D∑

D
i¼1 ∑n

k¼1βkxk ið Þ t 2017
� �

, 1
D∑

D
i¼1 ∑n

k¼1βkxk ið Þ t 2018
� �

, and
1
D∑

D
i¼1 ∑n

k¼1βkxk ið Þ t 2019
� �

), where t represents June, July, August, or JJA,
and D represents total days in the month or in JJA. The trend driven by
the k-th meteorological parameter (Trend_Met_k) was calculated as
the slope of linear fitting of the five mean values (1D∑

D
i¼1βkxk ið Þ t 2015,

1
D∑

D
i¼1βkxk ið Þ t 2016, 1

D∑
D
i¼1βkxk ið Þ t 2017, 1

D∑
D
i¼1βkxk ið Þ t 2018, and

1
D∑

D
i¼1βkxk ið Þ t 2019). Therefore the relative contribution of each keymeteoro-

logical parameter to the totalmeteorologically driven trendwas quantified by
Trend_Met_k/Trend_Met. Similarly, the slope of linear fitting of the mean
values of observed MDA8 O3 concentrations for 2015–2019 was defined as
the observed trend (Trend_Obs).
2.3.3. Anthropogenic influences on trends of MDA8 O3 concentrations
Observed trends of MDA8 O3 concentrations over 2015–2020 were

caused by changes in anthropogenic emissions and in meteorology. The re-
moval of the meteorologically driven trend of MDA8 O3 concentrations
from observations leaves a residual trend, which is interpreted as the contri-
bution of anthropogenic emissions. It should be noted that the changes in
natural emissions (such as biogenic VOCs and soil NOx) are considered in
meteorological contributions. Such assumption on anthropogenic and me-
teorological contributions have been used in previous studies such as Li
et al. (2019a, 2020), Chen et al. (2020a), and Chen et al. (2020b). There-
fore, anthropogenic contributions to Trend_Obs are assumed as Trend_Obs
minus Trend_Met.
4

3. Results

3.1. Spatial and temporal variations in observed MDA8 O3 concentrations in
YRD

Fig. 2 shows the spatial distributions of the summer mean MDA8 O3

concentrations over YRD from the MEE network for years of 2015–2020.
The observed MDA8 O3 concentrations averaged over YRD kept increasing
over 2015–2019 (from101.8 μgm−3 in 2015 to 132.8 μgm−3 in 2019) and
showed large decreases in 2020 (112.7 μg m−3 in 2020). Spatially, Shang-
hai and Jiangsu Province had the highest MDA8 O3 concentrations in
2015–2017 and 2020, while Jiangsu and Anhui Provinces were the most
polluted regions in 2018 and 2019. Over 2015–2019, the summer mean
MDA8 O3 concentrations in Jiangsu and Anhui Provinces and overall in
YRD kept increasing, and those in Shanghai and Zhejiang Province showed
fluctuations. During 2015–2019, summer mean MDA8 O3 concentrations
exhibited trends of −1.3, 6.3, 0.4, 16.3, and 7.2 μg m−3 y−1 in Shanghai,
Jiangsu, Zhejiang, Anhui, and YRD, respectively, indicating the fastest in-
creases in O3 in Jiangsu and Anhui. Although the trend in Shanghai was
negative, there were large increases in MDA8 O3 concentrations in 2017
and 2019. Interestingly, the summer mean O3 concentrations in 2020 de-
creased significantly compared with those in 2019, which offers a good op-
portunity to establish a statistical model using observed O3 concentrations
in 2015–2019 and to predict the changes in MDA8 O3 concentration in
2020. This can allow one to verify the effectiveness of the statistical model.

Fig. 3 displays the observed yearly variations in seasonal (JJA) or
monthly (June, July, and August) mean MDA8 O3 concentrations over
YRD from 2015 to 2020. Generally, MDA8 O3 concentrations in JJA had
an increasing trend from 2015 to 2019 and a sharp decline in 2020. In
June, MDA8 O3 concentrations increased during 2015–2018, and the dif-
ference was small between 2018 and 2019. In July, MDA8 O3 increased
over 2015–2017, dropped in 2018 and returned to a high level again in
2019. In August, the concentrations of MDA8 O3 did not show an obvious
trend. Therefore, the yearly variations (or trends) of MDA8 O3 in different
monthswere inconsistent,whichwill be examined in detail in the following
sections.

3.2. Impacts of meteorological parameters on daily variations of MDA8 O3

concentrations

3.2.1. Key meteorological parameters that drive the daily variations of MDA8O3

The logic of presented results of Section 3.2 is shown in Fig. S1. Herewe
obtained first the MLR equations between observed MDA8 O3 concentra-
tions and meteorological parameters as described in Section 2.3.1. The re-
gression equations and key meteorological parameters are summarized in
Table 2. Statistically, the percentage of the observed daily variations in
MDA8 O3 explained by variations of key meteorological parameters is rep-
resented by the adjusted coefficients of determination (R2) of MLR, in
which the relative contribution from each key meteorological parameter
was obtained by LMG method (also described in Section 2.3.1). Fig. 4
shows R2 and the relative contributions of key meteorological parameters
in June, July, August, and JJA of 2015–2019 for YRD and cities of Shang-
hai, Nanjing, Hangzhou, and Hefei.

Over YRD, the values of R2 ranged from 0.72 to 0.74 (Fig. 4), indicating
that the key meteorological parameters could explain 72%–74% of the ob-
served daily variations in summertime MDA8 O3 concentrations during
2015–2019. RH was the dominant meteorological parameter, contributing
43%, 79%, 78%, and 82% to the total meteorological influence on daily
variations of MDA8 O3 in June, July, August, and JJA, respectively. There
were statistically significant negative correlations between RH and MDA8
O3 concentrations, with the largest impact on O3 of −3.7 μg m−3 %−1 in
YRD in JJA (Table 2). High relative humidity increases the O3 loss
(Johnson et al., 1999; Jacob and Winner, 2009). Considering the whole
of YRD, the second most important meteorological parameter that drove
the daily variations of MDA8 O3 was WS in July, August, and JJA, which
was negatively correlated with MDA8 O3 concentrations with regression



Fig. 2. Spatial distributions of summer (June–July–August, JJA) mean concentrations of observed MDA8 O3 (μg m−3) at the 27 city sites in YRD for years of 2015–2020.
Mean values for Shanghai (SH), Jiangsu (JS), Zhejiang (ZJ), Anhui (AH), and YRD are indicated at the bottom left corner of each panel.
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coefficients of−2.3 to−2.8 μgm−3 (m s−1)−1, indicating a dilution effect
of winds. The secondmost important meteorological parameter in YRDwas
SW for June, which was positively correlated with MDA8 O3.

In order to compare the characteristics of meteorological effects on
daily variations of summertime MDA8 O3 concentrations in the whole of
YRD with those in individual cities within YRD, we selected four cities
(i.e., Shanghai, Nanjing, Hangzhou, and Hefei) for analysis. The regression
equations and relative contributions of key meteorological parameters in
Fig. 3. The observed interannual variations of MDA8 O3 concentrations (μg m−3) in J
enclose 25% percentile, median value, and 75% percentile, the whiskers represent the m

5

June, July, August, and JJA during the year of 2015–2019 are summarized,
respectively, in Table 2 and Fig. 4. In Shanghai, Nanjing, Hangzhou, and
Hefei, values of R2 were 0.47–0.64, 0.50–0.64, 0.62–0.73, and 0.56–0.68
(Fig. 4), respectively, which were lower than those calculated for the
whole of YRD.

Over 2015–2019, RHwas the top driver for daily variations of summer-
time MDA8 O3 concentrations in the four cities, which agreed with that in
YRD. The relative contributions of RH to the total meteorological influence
JA, June, July, and August averaged over YRD for years of 2015–2020. The boxes
inimum and maximum values, and crosses represent the average value.



Table 2
Stepwise multiple linear regressions between spatially averaged daily meteorologi-
cal parameters (shown in Table 1) and observed MDA8 O3 concentrations in Yang-
tze River Delta (YRD), Shanghai, Nanjing, Hangzhou, and Hefei in June, July,
August, and JJA of 2015–2019. The regression coefficients shown in the equations
passed the t-test of significance (P < 0.05).

Region Period Regression equation

YRD Jun. MDA8 O3 = 250.566 − 2.500*RH + 0.005*SW + 0.060*PBLH
Jul. MDA8 O3 = 400.319 − 3.516*RH − 2.292*WS
Aug. MDA8 O3 = 404.287 − 3.562*RH − 2.765*WS
JJA MDA8 O3 = 412.620 − 3.664*RH − 2.335*WS + 3.607*NS

Shanghai Jun. MDA8 O3 = 221.397 − 3.263*RH + 6.908*T2
Jul. MDA8 O3 = 524.243 − 4.994*RH + 26.031*EW
Aug. MDA8 O3 = 361.903 + 35.501*EW − 2.641*RH − 3.068*WS

− 0.290*TCC
JJA MDA8 O3 = 433.808 − 3.774*RH + 27.952*EW − 2.183*WS

Nanjing Jun. MDA8 O3 = 248.172 − 3.252*RH + 5.217*T2 − 9.127*EW
Jul. MDA8 O3 = 413.339 − 3.632*RH − 0.381*PR − 1.755*WS
Aug. MDA8 O3 = 262.939 − 2.027*RH − 4.638*WS + 0.009*SW
JJA MDA8 O3 = 354.035 − 3.406*RH − 2.570*WS + 1.773*T2−

6.986*EW
Hangzhou Jun. MDA8 O3 = 263.746 − 2.600*RH + 0.009*SW + 0.059*PBLH

− 1.366*WS
Jul. MDA8 O3 = 358.345 − 2.994*RH − 4.086*WS + 0.038*PBLH
Aug. MDA8 O3 = 290.362 − 2.905*RH − 4.481*WS + 3.383*T2
JJA MDA8 O3 = 369.061 − 3.160*RH − 3.412*WS + 0.041*PBLH

Hefei Jun. MDA8 O3 = 174.184 − 2.298*RH − 20.422*EW + 5.457*T2
− 2.121*WS

Jul. MDA8 O3 = 248.715 − 2.795*RH + 2.572*T2 − 11.795*EW
Aug. MDA8 O3 = 150.661 − 2.498*RH + 5.691*T2 − 2.151*WS −

14.200*EW
JJA MDA8 O3 = 289.556 − 2.803*RH − 12.994*EW − 1.697*WS

+ 1.723*T2
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on daily variations of observed MDA8 O3 were 33%–84%, 41%–80%,
37%–57%, and 56%–72% in Shanghai, Nanjing, Hangzhou, and Hefei, re-
spectively. RH had the largest impacts on MDA8 O3 in JJA, with regression
coefficients of −3.2 and − 2.8 μg m−3 %−1 in Hangzhou and Hefei, re-
spectively. In Shanghai and Nanjing, the strongest influences occurred in
July (−5.0 and − 3.6 μg m−3 %−1, respectively). Except for RH, EW ap-
pears frequently as a key meteorological parameter. In Shanghai, the re-
gression coefficient between MDA8 O3 and EW was positive, which was
attributed to the transport of upwind biogenic emissions to Shanghai by
southwesterlies that increased MDA8 O3 concentrations (Chang et al.,
2019). In August, considering the daily variation of MDA8 O3 explained
by key meteorological parameters, 42% of the variation was caused by
the variation of EW, which was larger than the contribution from the vari-
ation of RH (33%) on the basis of the LMGmethod. On the contrary, the re-
gression coefficient between MDA8 O3 and EW was negative in Nanjing
and Hefei. The southeasterlies brought air mass to pass the highly industri-
alized and urbanized areas of YRD and eventually reached Nanjing and
Hefei (Tu et al., 2007; Xie et al., 2021). The general conclusion for the
four cities was that RH, T2, SW,WS, TCC (contributed 9% to daily variation
of MDA8 O3 explained by key meteorological parameters in August in
Shanghai), and PR (18% in July in Nanjing) had large effects on the daily
variations of MDA8 O3 concentrations over 2015–2019.

3.2.2. The performances of MLR equations in fitting daily concentrations of
MDA8O3_MLR

By substituting the corresponding daily meteorological data into MLR
equations in Table 2, daily MDA8O3_MLR were obtained. Fig. 5 compares
the daily variations of MDA8O3_OBS with those of MDA8O3_MLR in YRD
and four cities for JJA of 2015–2020. The comparisons for individual
months of June, July, and August are shown in Figs. S2–S4. In JJA of
2015–2020, the correlation coefficients between MDA8O3_MLR and
MDA8O3_OBS were in the range of 0.73–0.83 and MBs (NMBs) were
−2.29 (−1.9%), −0.09 (−0.1%), −3.48 (−2.6%), −0.54 (−0.4%)
and −2.07 μg m−3 (−1.7%), respectively in YRD, Shanghai, Nanjing,
Hangzhou, and Hefei. In JJA of different years, the correlation coefficients
in YRD, Shanghai, Nanjing, Hangzhou, and Hefei were in the ranges of
6

0.80–0.89, 0.55–0.78, 0.68–0.83, 0.67–0.83, and 0.63–0.84, respectively,
suggesting a fairly good performance of the MLR equations although the
fitted O3 concentrations had small low biases.

Considering the O3-polluted days (days with MDA8 O3 concentration
exceeding the Chinese Ambient Air Quality (CAAQS) grade II standard of
160 μg m−3), the MDA8O3_MLR could capture, respectively, 34%, 54%,
63%, 52%, and 50% of the observed O3-polluted days in YRD, Shanghai,
Nanjing, Hangzhou, and Hefei in JJA over 2015–2020. It should be noted
thatMDA8O3_MLR in 2020were predicted (by using theMLR equations es-
tablished on the basis of observed MDA8 O3 and meteorological fields of
2015–2019 (Table 2) as well as 2020 meteorological fields). The r values
(NMBs) between MDA8O3_MLR and daily observations over JJA in 2020
were 0.80 (−11.2%), 0.55 (−0.5%), 0.73 (−14.4%), 0.67 (−2.7%), and
0.74 (−10.4%) in YRD, Shanghai, Nanjing, Hangzhou, and Hefei, respec-
tively. MDA8O3_MLR in 2020 captured well the observed decreases in O3

concentrations in 2020. Compared to 2019, the averaged MDA8O3_OBS
(MDA8O3_MLR) dropped by 20.1 (27.7), 12.4 (15.4), 26.5 (49.3), 30.0
(26.9), and 40.6 (47.4) μg m−3 in YRD, Shanghai, Nanjing, Hangzhou,
and Hefei for JJA of 2020, respectively, suggesting that the changes in me-
teorological fields had important contributions to the decreases in O3 and
indicating an O3 increase due to changes in anthropogenic emissions in
YRD, Shanghai, Nanjing, and Hefei in 2020. Relative to 2019, concentra-
tions of observed PM2.5 dropped by 17%, 1%, 18%, and 18% in YRD,
Shanghai, Nanjing, and Hefei for JJA of 2020, respectively. Li et al.
(2019a) reported that the decreases in PM2.5 was the dominant anthropo-
genic driver for O3 increases by slowing down the aerosol sink of
hydroperoxy radicals, which then accelerated the O3 production.

3.2.3. Comparisons of the performances of MLR equations in different regions/
time scales

For air quality planning of a specific city in YRD, it would be helpful to
obtain a best performance MLR equation to predict daily MDA8 O3 concen-
trations (MDA8O3_MLR). There are two concerns here: (1) For MDA8 O3 in
June, July, August, or JJA, should the city use MLR equation fitted using
the local daily parameters (observed MDA8 O3 concentrations and meteo-
rological parameters) or that fitted using the daily parameters averaged
over YRD? (2) For MDA8 O3 in June, July, or August in a specific city,
should the city use MLR equation fitted using daily parameters (observed
MDA8O3 concentrations andmeteorological parameters) in this individual
month (June, July, or August) or that fitted using daily parameters in the
whole of JJA? We address these two issues in this subsection.

Fig. 6 presents the summertime O3-polluted days obtained from obser-
vation, from the MLR equation fitted using the local daily parameters
(Table 2), and from the MLR equation fitted using the daily parameters av-
eraged over YRD for cities of Shanghai, Nanjing, Hangzhou, and Hefei in
June, July, August, and JJA of 2015–2020. In Shanghai, MDA8O3_MLR of
Shanghai and of YRD captured 48%–71% and 6%–27% of the observed
O3-polluted days over 2015–2020, respectively. Furthermore, the better
performance of MLR equation of Shanghai than that of YRD held for each
year of 2015–2020. Hangzhou has the same situation; the O3-polluted
days in Hangzhou calculated byMDA8O3_MLR of Hangzhou and of YRD ac-
counted for 42%–73% and 18%–38% of observations in 2015–2020, re-
spectively. The similar performance was found in Nanjing in July, August,
and JJA. In June, the O3-polluted days in Nanjing from MDA8O3_MLR of
Nanjing and of YRDwere 2 (8) and 4 (9) days in 2016 (2020), respectively.
In Hefei, the model performance was completely opposite to that in Shang-
hai and Hangzhou. The proportions of summertime O3-polluted days cap-
tured by the MDA8O3_MLR of Hefei and of YRD were 45%–74% and
55%–80%, respectively, during 2015–2020. In Hefei, the MLR equation
of Hefei/of YRD underestimated/overestimated MDA8O3_OBS with an
NMB of −1.7%/6.4% in JJA over 2015–2020 (Fig. S5). Thus in Hefei,
the high bias in MDA8O3_MLR of YRD explained the capture of more O3-
polluted days than MDA8O3_MLR of Hefei. The similar situation occurred
in June, July, and August. Considering the small difference between the
proportions of summertime O3-polluted days captured by MDA8O3_MLR
of Hefei and of YRD and the fact that MDA8O3_MLR of Hefei (0.76) had



Fig. 4. The estimated relative contribution (%) of each key meteorological variable to the total meteorological impact on observed daily variations of MDA8 O3 obtained by
LMG for June, July, August, and JJA of 2015–2019 in YRD, Shanghai, Nanjing, Hangzhou, and Hefei. See Table 2 for the meteorological parameters retained in MLR
equations. The adjusted coefficient of determination of regression (R2) is indicated at the bottom of each panel.
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higher correlation coefficients with MDA8O3_OBS than MDA8O3_MLR
of YRD (0.73) in JJA (Fig. S5), we think that the exception at Hefei
would not compromise the conclusion of this work. Therefore, we suggest
MLR equations fitted using the local daily parameters for the application
in cities.

Fig. 7 compares the performance of MLR equation fitted using daily pa-
rameters of the current month with that of MLR equation fitted using daily
parameters of JJA for individual cities of Shanghai, Nanjing, Hangzhou,
7

and Hefei over 2015–2020. In Shanghai, the MLR equation of the current
month had better performance than that of JJA in all the months of June,
July, and August of 2015–2020; MDA8O3_MLR of the current month and
of JJA captured 48%–71% and 42%–66% of the observed O3-polluted
days respectively. In Nanjing, MDA8O3_MLR of the current month of
June/August captured 79%/55% of the observed O3-polluted days, which
was higher than the ratio of 73%/47% captured by MDA8O3_MLR of JJA
for the same month. However, the O3-polluted days captured by



Fig. 5. Time series of daily MDA8 O3 concentrations (μg m−3) from observation (MDA8O3_OBS) and from MLR equations (MDA8O3_MLR) in YRD, Shanghai, Nanjing,
Hangzhou, and Hefei in JJA of 2015–2020. MDA8O3_MLR were calculated by substituting daily meteorological data averaged over YRD or the four cities into the
corresponding regression equations in Table 2. The black, red, and blue lines indicate MDA8O3_OBS, MDA8O3_MLR, and the Chinese Ambient Air Quality (CAAQS) grade
II standard (160 μg m−3), respectively. The light pink, yellow, and blue shades indicate days with MDA8O3_OBS and MDA8O3_MLR both exceeding 160 μg m−3, days
with only MDA8O3_OBS exceeding 160 μg m−3, and days with only MDA8O3_MLR exceeding 160 μg m−3, respectively. Correlation coefficient (r), mean bias (MB), and
normalized mean bias (NMB) between MDA8O3_MLR and MDA8O3_OBS over 2015–2020 as well as the r values between the two in different years are shown.

J. Qian et al. Science of the Total Environment 834 (2022) 155107
MDA8O3_MLR of JJA were more than those captured by MDA8O3_MLR of
current month in Nanjing in July. The performance of MLR equations of
current month was worse than that of JJA in Hangzhou and the perfor-
mance of these two types of equations was about the same in Hefei.
Fig. S6 compares correlation coefficients, MBs, and NMBs between
MDA8O3_OBS andMDA8O3_MLR of the current month with those between
MDA8O3_OBS and MDA8O3_MLR of JJA for the four cities. The correlation
coefficients of MDA8O3_MLR of the current month were higher than those
of MDA8O3_MLR of JJA except for Hefei in July, suggesting the use of for-
mer approach for cities. For July in Nanjing, July and August in Hangzhou,
and July in Hefei, the MBs and NMBs by MDA8O3_MLR of the current
month/of JJA were all negative/positive over 2015–2020, indicating that
MDA8O3_MLR of current month/of JJA underestimated/overestimated
8

the observed MDA8 O3 concentrations, which led to more O3-polluted
days captured by MLR equations of JJA. To summarize, results above sug-
gest the establishment of MLR equations at city scale on the basis of statis-
tics of current month rather than of JJA.

3.3. Meteorologically driven changes in yearly variations of MDA8 O3

concentrations

MLR equations fitted using the local daily parameters of the current
month have been proved above to be more accurate for cities in the YRD.
For these four cities, yearly variations of MDA8 O3 can be calculated by av-
eraging daily MDA8O3_MLR over June, July, or August in a specific year
from 2015 to 2020 by usingMLR equations of the local city and the current



Fig. 6. The summertime O3-polluted days (days with MDA8 O3 concentration exceeding 160 μg m−3) from MDA8O3_OBS, MDA8O3_MLR of the local cities, and
MDA8O3_MLR of YRD in Shanghai, Nanjing, Hangzhou, and Hefei in June, July, August, and JJA of 2015–2020. The green and blue numbers in each panel indicate the
percentages of observed O3-polluted days captured by MDA8O3_MLR of the local cities and of YRD over 2015–2020, respectively.
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month (Table 2). For later examination of the spatio-temporal heterogene-
ity of the meteorological influences on yearly variations and trends of
MDA8 O3, we still present the yearly variations of MDA8 O3 calculated
from daily MDA8O3_MLR from the regression equations of YRD and JJA.
Fig. 8 compares yearly variations ofMDA8O3_OBS andMDA8O3_MLR aver-
aged over YRD and individual cities in June, July, August, and JJA of
2015–2020. The correlation coefficients between yearly MDA8O3_MLR
and MDA8O3_OBS were generally greater than 0.8 except for in YRD
(0.66), Shanghai (0.77), and Nanjing (0.52) in August. MBs (NMBs) were
in the range of −2.76 to −1.74 μg m−3 (−2.3% to −1.4%),
−0.19–0.69 μg m−3 (−0.1%–0.5%), −5.47–1.38 μg m−3 (−3.9%–
1.0%), −0.57–2.03 μg m−3 (−0.5%–1.7%), and −4.08–4.34 μg m−3

(−3.7%–3.3%), respectively, in YRD, Shanghai, Nanjing, Hangzhou, and
Hefei. Yearly variations of MDA8 O3 calculated from daily MDA8O3_MLR
can capture well the yearly variations in MDA8O3_OBS with small biases
over YRD and four cities. Again, yearly variations of MDA8 O3 from daily
MDA8O3_MLR of the local city/of the current month had higher correlation
9

coefficients and lower MBs (NMBs) than those of YRD/of JJA in Shanghai,
Nanjing, Hangzhou, and Hefei (Figs. S7–S8).

Meteorologically driven yearly changes in MDA8 O3 concentrations
(ΔMDA8O3_Met_Y2-Y1, indicating MDA8O3_MLR averaged over year Y2
minus that over year Y1) were calculated (see Section 2.3.2 for details) in
YRD, Shanghai, Nanjing, Hangzhou, and Hefei for June, July, August, and
JJA of 2015–2020 (Fig. 9). The highest positive ΔMDA8O3_Met_2016–2015
occurred in August, which were 19.4, 8.0, 20.5, 20.1, and 29.9 μg m−3 in
YRD, Shanghai, Nanjing, Hangzhou, and Hefei, respectively. The positive
ΔMDA8O3_Met_2017–2016 were the highest/second highest in July/June
in YRD, Shanghai, and Nanjing. In Hefei, the meteorological fields resulted
in an increase of 32.8/32.4 μg m−3 in MDA8 O3 for June/July in 2017
relative to 2016. Relative to 2017, meteorological fields made a positive/
negative contribution to the changes of MDA8 O3 in June/July in both
YRD and individual cities in 2018. In August, largest negative
ΔMDA8O3_Met_2018–2017 (−52.7 μg m−3) occurred in Shanghai among
cities, which led to a net negative change in JJA (−25.5 μg m−3). The



Fig. 7. The summertime O3-polluted days fromMDA8O3_OBS, MDA8O3_MLR of the current month, and MDA8O3_MLR of JJA in Shanghai, Nanjing, Hangzhou, and Hefei in
June, July, andAugust of 2015–2020. The green and blue numbers indicate the percentages of the observedO3-polluted days captured byMDA8O3_MLRof the currentmonth
and of JJA over 2015–2020, respectively.
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ΔMDA8O3_Met_2019–2018were all positive in June, July, August, and JJA
inNanjing andHefei, with the highest increases in July. It is interesting that,
relative to 2019, meteorological fields in 2020 led to consistent decreases in
MDA8 O3 in all regions/cities in June, July, August, and JJA. The largest
negative ΔMDA8O3_Met_2020–2019 were in July in YRD (−35.7 μg
m−3), Nanjing (−62.3 μg m−3), and Hefei (−62.9 μg m−3), in JJA in
Shanghai (−15.4 μg m−3), and in June in Hangzhou (−41.8 μg m−3).

To understand the large meteorologically driven decreases in MDA8 O3

in 2020 relative to 2019, Fig. 10 shows the spatial distributions of the abso-
lute differences in key meteorological parameters (T2, RH, SW, PBLH, WS,
and EW) in June, July, August, and JJA in 2020 relative to 2019. Theseme-
teorological parameters were taken from MERRA-2 reanalyzed data with a
horizontal resolution of 0.5° × 0.625°. Over 2019–2020, T2 either in-
creased or decreased (in the range of −3.0 to +3.0 °C) in the studies re-
gions. RH increased from 2019 to 2020 by 7.3, 7.9, 5.1, and 6.7% in
10
June, July, August, and JJA, respectively, as the values were averaged
over YRD, which had an effect of reducing MDA8 O3 (Gong and Liao,
2019). In addition, decreases in summertime SW and PBLH and increases
in summertime WS and EW occurred in almost the entire YRD region
over 2019–2020.

The relative contributions of above meteorological parameters
to ΔMDA8O3_Met_2020–2019 can be quantified as described in
Section 2.3.2. The top two meteorological parameters that contributed to
ΔMDA8O3_Met_2020–2019 averaged over JJA are shown in the right
most column of Fig. 9. Considering the average over JJA and YRD, the in-
creases in RH by 6.7% and in WS by 1.9 m s−1 from 2019 to 2020 contrib-
uted, respectively, 89% and 16% to the ΔMDA8O3_Met_2020–2019 of
−27.7 μg m−3. Similarly, increases in RH and WS accounted for 87%/
48% and 5%/37% of the meteorology-driven decrease averaged over JJA
in 2020 relative to 2019 in Nanjing/Hangzhou, respectively. In Shanghai,



Fig. 8. Yearly variations of monthly (June, July, and August) and seasonal (JJA) mean MDA8O3_OBS and MDA8O3_MLR in YRD, Shanghai, Nanjing, Hangzhou, and Hefei
from2015 to 2020. For the four cities, yearly variations ofMDA8O3were calculated by averaging dailyMDA8O3_MLR over June, July, or August in a specific year from2015
to 2020 by usingMLR equations of the local city and the currentmonth (Table 2). The black and red lines indicate values fromMDA8O3_OBS andMDA8O3_MLR, respectively.
r, MB, and NMB between yearly MDA8O3_OBS and MDA8O3_MLR of 2015–2020 are shown at the bottom left corner of each panel.
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increases in RH and EW were the top two drivers, contributing 133% and
−62% to the negative ΔMDA8O3_Met_2020–2019 for JJA, respectively,
due to the positive regression coefficient between MDA8 O3 and EW. In
Hefei, increases in RH and EW made contributions of 80% and 12% to
the meteorologically driven decreases in MDA8 O3 concentrations aver-
aged over JJA in 2020 relative to 2019.
11
3.4. Meteorologically driven trends of MDA8 O3 concentrations

The observed and meteorologically driven trends (Trend_Obs and
Trend_Met) of summertime MDA8 O3 concentrations in YRD, Shanghai,
Nanjing, Hangzhou, and Hefei over 2015–2019 are shown in Fig. 11.
Trend_Met for years of 2015–2019 was calculated as the slope obtained



Fig. 9.Meteorologically driven yearly variations of MDA8 O3 concentrations (μg m−3) for June, July, August, and JJA in YRD, Shanghai, Nanjing, Hangzhou, and Hefei. In
the right most column, the absolute differences (2020–2019) in twomost dominant meteorological parameters averaged over JJA as well as their percentage contribution to
ΔMDA8O3_Met_2020–2019were also shown for YRD, Shanghai, Nanjing, Hangzhou, andHefei. Units ofΔRH andΔWSare% andm s−1, respectively.ΔEW is dimensionless.
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by linear fitting of the five mean values (1D∑
D
i¼1 ∑n

k¼1βkxk ið Þ t 2015
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,
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,
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k¼1βkxk ið Þ t 2018
� �

, and 1
D∑

D
i¼1 ∑n

k¼1βkxk ið Þ t 2020
� �

) (see
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Section 2.3.2 for more details). Over YRD, for June, July, August, and
JJA, the Trend_Obs were +12.9, +6.7, +2.2, and +7.2 μg m−3 y−1, re-
spectively, and the estimated meteorological driven trends were +9.2
(71% of the observed trend), +6.2 (93%), +0.2 (9%), and +5.0 (69%)



Fig. 10. Spatial distributions of absolute differences in monthly (June, July, and August) and seasonal (JJA) mean (a) T2 (°C), (b) RH (%), (c) SW (W m−2), (d) PBLH (m),
(e) WS (m s−1), and (f) EW (dimensionless) over YRD in 2020 relative to 2019.
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μg m−3 y−1, respectively. The upward trends were the largest in June and
smallest in August. In June, July, and JJA from2015 to2019, the increasing
trends were mainly attributed to the changes in meteorological fields. Con-
sidering JJA and YRD, the changes in meteorological fields are estimated to
contribute 69% to Trend_Obs over 2015–2019 in our study, which is larger
than the meteorological contribution of 44% over 2013–2019 reported by
Li et al. (2020) by using a MLR approach, and is smaller than the meteoro-
logical contribution of 84% over 2012–2017 reported by Dang et al. (2021)
by using the GEOS-Chemmodel. Further investigation showed that the de-
creases inRH (−2.0,−1.3,−0.2, and−1.2%y−1) was themost dominant
meteorological parameter, contributing 55%, 70%, 488%, and 84% to
Trend_Met in YRD for June, July, August, and JJA over 2015–2019, respec-
tively. In August, the Trend_Obs and Trend_Met were +2.2 and +0.2 μg
m−3 y−1, respectively; decreases in RH (−0.2% y−1) and increases in
WS (+0.3 m s−1 y−1) explained 488% and −388% of the Trend_Met, re-
spectively in YRD over 2015–2019.

Fig. 11(b) presents Trend_Obs and Trend_Met in Shanghai, Nanjing,
Hangzhou, and Hefei for June, July, August, and JJA over 2015–2019. In
Shanghai, the Trend_Obs was positive only for June, with Trend_Met mak-
ing a contribution of 174% over 2015–2019. The situations of Trend_Obs
and Trend_Met over 2015–2019 in Nanjing and Hangzhou were similar to
those in YRD except in August, when the Trend_Obs were negative in
both cities. In Hefei, Trend_Obs and Trend_Met of 2015–2019 were all pos-
itive. The upward Trend_Obs and Trend_Met of MDA8 O3 were both the
Fig. 11.Observed, meteorologically driven, and anthropogenically driven trends (μgm−

(a) the whole of YRD and (b) four cities (Shanghai, Nanjing, Hangzhou, and Hefei). Blac
driven trends; pink bars and values represent anthropogenically driven trends. The blue a
in meteorological factors and anthropogenic emissions to the observed trends, respectiv
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largest in June in four cities, similar to those in YRD. In most instances,
RH was the most dominant meteorological parameter of summertime
Trend_Met in four cities. In addition, WS was the top driver of Trend_Met
for a certain month in a certain city (August in Shanghai as well as July
and August in Hangzhou) during 2015–2019.

Assuming that anthropogenic contributions to Trend_Obs can be
obtained by Trend_Obs minus Trend_Met (see Section 2.3.3 for more
details). Over 2015–2019, changes in anthropogenic emissions always
made a positive contribution to the positive summertime Trend_Obs in
YRD (7%–91% of the observed trend), Hangzhou (9%–32% in June, July,
and JJA), and Hefei (14%–43%). Li et al. (2019a) confirmed that decrease
of PM2.5 slowed down the aerosol sink of hydroperoxy (HO2) radicals,
which stimulated ozone production over 2013–2017 by Geos-Chem
model. In Shanghai and Nanjing, changes in anthropogenic emission were
suspected to suppress summertime MDA8 O3 increases during the five
years. The largest negative anthropogenically driven trend of −7.6/−3.6
μg m−3 y−1 occurred in July/August in Shanghai/Nanjing over
2015–2019.

In summary, Trend_Obs and Trend_Met of June, July, August, and JJA
during the year of 2015–2019 over YRD, Nanjing, Hangzhou, and Hefei
were mostly positive. RH was very often the top driver of Trend_Met in
YRD and individual cities for 2015–2019. The statistics showed that emis-
sion control measures in Shanghai and Nanjing inhibited ozone increases
over 2015–2019.
3 y−1) of MDA8O3 concentrations in June, July, August, and JJA over 2015–2019 in
k values represent observed trends; blue bars and values represent meteorologically
nd pink values in parentheses represent the contributions (%) of 2015–2019 changes
ely.
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4. Conclusions and discussions

Previous observational and modeling studies generally presented
region-based estimates of themeteorological impacts on daily or yearly var-
iations of MDA8 O3. In this work, we paid special attention to the meteoro-
logical impacts at city scale. The meteorological impacts on MDA8O3 were
quantified by theMLR approach and the relative contributions of keymete-
orological parameters that led to the observed daily variations of MDA8 O3

were obtained by the LMGmethod. We compared results for individual cit-
ies (Shanghai, Nanjing, Hangzhou, and Hefei) for individual months (June,
July, and August) with those for YRD and JJA to investigate the spatio-
temporal heterogeneity in quantifying the meteorological effects and to
make suggestions for air quality planning.

The statistics showed that the changes in keymeteorological parameters
could explain 72%, 56%, 58%, 64%, and 58% of observed daily variations
of MDA8 O3 in JJA in YRD, Shanghai, Nanjing, Hangzhou, and Hefei, re-
spectively. RH was found to be the top driver that explained 33%–84% of
the daily variations in MDA8 O3 explained by key meteorological parame-
ters in YRD and four cities. Compared to MDA8O3_MLR of YRD,
MDA8O3_MLR of the local cities always had higher correlation coefficients
with MDA8O3_OBS and lower MBs and NMBs over 2015–2020. The fitted
MLR equations of the local city also had better performance in capturing
summertime O3-polluted days than those of YRD; the fitted MLR equations
of the local city (of YRD) captured 54% (17%), 63% (51%), and 52% (27%)
of the observed O3-polluted days in JJA of 2015–2020 in Shanghai, Nan-
jing, and Hangzhou, respectively.

The meteorologically driven trends (Trend_Met) were calculated using
the established MLR equations. Over 2015–2019, Trend_Obs and
Trend_Met were mostly positive in YRD, Nanjing, Hangzhou, and Hefei,
considering the trends of MDA8 O3 in JJA or in individual months (June,
July, August). Trend_Met were estimated to contribute 69%, −77%,
140%, 68%, and 63% to Trend_Obs of JJA in YRD, Shanghai, Nanjing,
Hangzhou, and Hefei, respectively. In Shanghai/Nanjing, Trend_Obs,
Trend_Met, and assumed anthropogenically driven trend of JJA over
2015–2019 were −1.3/+8.1 μg m−3 y−1, +1.0/+11.3 μg m−3 y−1,
and −2.3/−3.2 μg m−3 y−1, respectively, indicating that changes in an-
thropogenic emission were estimated to improve ozone pollution by
usingMLR equations at city scale. Again, RHwas found to be themost dom-
inant meteorological parameter that was responsible for Trend_Met in YRD
and in four cities over 2015–2019.

The MLR equations obtained from 2015 to 2019 were found to be able
to reproduce MDA8 O3 in 2020. The correlation coefficients of
MDA8O3_MLR in 2020 with observations over JJA were 0.80, 0.55, 0.73,
0.67, and 0.74 for daily variations of MDA8 O3 in YRD, Shanghai, Nanjing,
Hangzhou, and Hefei, respectively. MLR equations captured the decreases
in MDA8 O3 in the whole of YRD in 2020 relative to 2019. Relative to
2019, averaged over JJA, meteorological fields in 2020 reduced MDA8
O3 by 27.7, 15.4, 49.3, 26.9, and 47.4 μg m−3 in YRD, Shanghai, Nanjing,
Hangzhou, and Hefei, respectively, while the observed decreases in MDA8
O3 in 2020 were 20.1, 12.4, 26.5, 30.0, and 40.6 μg m−3 at these locations
respectively. The top two meteorological parameters driving these changes
in MDA8 O3 were the increases in RH and WS in YRD, Nanjing, and Hang-
zhou and the increases in RH and EW in Shanghai and Hefei.

Our results show that meteorological conditions play considerably im-
portant roles in driving daily and yearly changes in summertime O3 and
the characteristics of which vary by cities and months. Our results suggest
that it is necessary to establish MLR equations at city scale to account for
the role of meteorology in the control of O3 pollution. MLR equations can
be applied to predict whether meteorology is conducive to O3 pollution
or not on daily or yearly basis if meteorological parameters can be pre-
dicted. It should be noted that the fundamental reasons of air pollution
are anthropogenic emissions. Fully consideration of the joint influences of
emissions and meteorology is needed in air quality management.

In this work, we were focused on the meteorological influences on var-
iations and trends of O3 in cities in YRD for summermonths. Our suggested
approach of quantification for cities can be applied in other regions and
15
months. Our conclusions were obtained on the basis of observed MDA8
O3 concentrations and MERRA-2 reanalysis meteorological data. Analyses
can also be conducted in future studies by using observed meteorological
data or higher resolution meteorological fields (such as European Centre
for Medium-Range Weather Forecasts Reanalysis v5.0 data).
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