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H I G H L I G H T S  

• Air quality is predicted using WRF/CMAQ for the EXPLORE-YRD campaign. 
• ERA5 reanalysis data yield slightly better PM2.5 predictions than FNL, but both underpredict the high PM2.5 events. 
• O3 performance is similar with ERA5 and FNL. 
• Grid resolution is not a key factor for modelling PM2.5 and O3 in YRD.  
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A B S T R A C T   

The EXPeriment on the eLucidation of the atmospheric Oxidation capacity and aerosol foRmation and their 
Effects in the Yangtze River Delta (EXPLORE-YRD) campaign was carried out between May and June 2018 at a 
regional site in Taizhou, China. The EXPLORE-YRD campaign helped construct a detailed air quality model to 
understand the formation of O3 and PM2.5 further, identify the key sources of elevated air pollution events, and 
design efficient emission control strategies to reduce O3 and PM2.5 pollution in YRD. In this study, we predicted 
the air quality during the EXPLORE-YRD campaign using the Weather Research and Forecasting/Community 
Multiscale Air Quality modelling system (WRF/CMAQ) and evaluated model performance on O3 and PM2.5 
concentrations and compositions. Air quality was predicted using two sets of reanalysis data—NCEP Final 
(FNL) Operational Global Analysis and ECMWF Reanalysis v5.0 (ERA5)—and three horizontal resolutions of 
36, 12, and 4 km. The results showed that PM2.5 concentration was generally under-predicted using both the 
FNL and ERA5 data. ERA5 yielded slightly higher PM2.5 predictions during the EXPLORE-YRD campaign. Both 
reanalysis data sets under-predicted the high PM2.5 pollution processes on 29–30 May 2018, indicating that 
reanalysis data is not essential for under-predicting extreme PM2.5 pollution processes. The performance of O3 
was similar in both the reanalysis data sets, because O3 is mostly sensitive to temperature predictions and FNL 
and ERA5 yielded similar temperature results. Although the average performance of PM2.5 and O3 predictions 
yielded by FNL and ERA5 was similar, large differences were observed in certain locations on specific days (e.g. 
in Hangzhou between 29 May and June 6, 2018 and in Hefei on 1–3 June 2018). Therefore, the choice of 
reanalysis data could be an important factor affecting the predictions of PM2.5 and O3, depending on locations 
and episodes. Comparable results were obtained using predictions with different horizontal resolutions, indi
cating that grid resolution was not crucial for determining the model performance of both PM2.5 and O3 during 
the campaign.  
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1. Introduction 

The Yangtze River Delta (YRD) region is located in East China and 
has experienced severe regional haze pollution and photochemical smog 
pollution due to rapid economic growth and increase in urban ag
glomerations in recent decades (Li et al., 2015a, 2016, 2019; Ma et al., 
2019; Ming et al., 2017; Shu et al., 2016, 2017, 2019, 2020; Wang et al., 
2015). Particulate matter with diameters equal to or less than 2.5 μm 
(PM2.5) and ozone (O3) are the two major air pollutants in YRD (Fan 
et al., 2020; Pui et al., 2014; Wang et al., 2014) and have attracted 
increased attention in China (Guo et al., 2014, 2020; Lu et al., 2019). 
Several studies have been conducted to investigate the spatial and 
temporal variations (Hu et al., 2014; Wang et al., 2014, 2017) and recent 
trends (Ma et al., 2019; Pan et al., 2017) in PM2.5 and O3 in this region. 
Ma et al. (2019) pointed out that PM2.5 shows a downward trend, but O3 
increases. Moreover, a few severe pollution events in YRD have been 
studied to understand the characteristics, sources, and impact factors of 
PM2.5 and O3 (Li et al., 2015a, 2016, 2019; Shen et al., 2015; Zhang 
et al., 2019). The major anthropogenic sources of high O3 pollution in 
summer in this region include industrial combustion, industrial pro
cesses, and mobile sources (Li et al., 2015a, 2016, 2019). Studies by 
Shen et al. (2015) and Zhang et al. (2019) suggested that during heavy 
haze events in the YRD region, nitrate (NO3

− ) dominates over sulphate 
(SO4

2− ), dissimilar to the North China Plain region. Studies have also 
found that meteorological conditions and regional transport can play an 
important role in the development of pollutants, such as cold fronts that 
bring air pollutants from polluted upstream areas (Kang et al., 2019) and 
high-pressure systems that are favourable for the accumulation of pol
lutants in YRD (Shu et al., 2017). 

To understand the formation of O3 and PM2.5 in YRD, the EXPeri
ment on the eLucidation of the atmospheric Oxidation capacity and 
aerosol foRmation, and their Effects in the Yangtze River Delta 
(EXPLORE-YRD) campaign was carried out between May and June 
2018 at a regional site in Taizhou, Jiangsu Province, China. The 
comprehensive measurements of O3, CO, NOx, and SO2, and detailed 
VOCs were made during the campaign. PM concentrations, its chemical 
composition, and relevant precursors were also measured. Meteorolog
ical conditions were monitored, including temperature at a height of 10 
m (T2), relative humidity (RH), wind speed (WS) and direction (WD) at 
a height of 10 m, and planetary boundary layer height (PBL). These data 
provided strong support to build a detailed air quality model (AQM) in 
order to understand the formation of O3 and PM2.5 further, identify the 
key sources that cause the elevated air pollution events, and design 
efficient emission control strategies to reduce O3 and PM2.5 pollution in 
YRD. 

The Weather Research and Forecasting Model (WRF)/Community 
Multiscale Air Quality (CMAQ) modelling system was applied to simu
late air quality using the data collected during the EXPLORE-YRD 
campaign. The WRF/CMAQ modelling system has been previously 
applied to study air quality in different regions of China and has pro
vided valuable information on the formation mechanisms, potential 
impacts of emission control strategies and climate change, and health 
impacts. For example, Hu et al. (2016b) evaluated the performance of 
the WRF/CMAQ model on PM2.5 and O3 in China from 2013 to 2014 and 
found that the model could successfully reproduce the O3 and PM2.5 
concentrations in most cities in different seasons. Yang et al. (2019) used 
the CAMQ model and demonstrated that poor meteorological conditions 
were the primary reason for air quality deterioration in the winter of 
2015 in Xi’an. Ding et al. (2019) used CMAQ to evaluate the response of 
O3 pollution to emissions and meteorological changes during the warm 
seasons of 2013 and 2017 and concluded that MDA8 O3 was signifi
cantly influenced by anthropogenic emissions and meteorological vari
ations. Zhang et al. (2020) used the positive matrix factorisation method 
and CMAQ to estimate the source contribution of sulphur and nitrogen’s 
wet deposition on Mt. Emei from 2017 to 2019, revealing that the 
emissions within and outside the Sichuan Basin were substantial. 

Combining field observations and CMAQ simulation characterisation, 
Liu et al. (2020a) analysed the seasonal characteristics of aerosol in 
Beijing and observed increases in the relative abundances of the major 
aerosol components (i.e. SO4

2− , NO3
− , organic carbon (OC), and 

water-soluble organic carbon) when RH exceeded approximately 65% in 
winter. Hu et al. (2017a) predicted the impact of different future power 
generation plans in China on air quality using the CMAQ model. Un
certainties in the emission inventory can significantly impact the model 
predictions. For example, Huang et al. (2011) estimated that emission 
inventory in the YRD region has an overall uncertainty of ±19.1%, 
±27.7%, ±167.6%, ±133.4%, and ±112.8% for SO2, NOx, PM2.5, VOCs, 
and NH3, respectively. Hu et al. (2017d) evaluated CMAQ model per
formance using four different emission inventories in China and found 
that, in general, model performance in more developed regions, such as 
the YRD region, is better than that in western China. Wang et al. (2020) 
developed five biogenic emission cases with different land cover input 
and emission factors and evaluated their impacts on air quality in YRD. 
Their results indicated that the isoprene emissions in July could be 
underestimated by 37% in southern YRD when using the default emis
sion factors. 

Even though the models performed satisfactorily in the aforemen
tioned studies, a few factors were identified to substantially impact the 
accuracy of model prediction, besides the uncertainties associated with 
emission inputs (the bias in the meteorological inputs and the model 
resolutions). Meteorological conditions seemed to play a key role in 
affecting the O3 and PM2.5 pollution. The meteorological inputs required 
by the AQM studies are generally created using either the diagnostic 
method (derived from intensive meteorological observations) or, more 
often, prognostic methods (predicted by meteorological models, such as 
WRF) (Hu et al., 2010). Bias in WRF predicted wind speeds (biased low 
for low wind speeds, and biased high for high wind speeds) and was 
strongly correlated with the bias in the predicted PM concentrations (Hu 
et al., 2015). Reanalysis data, used as initial and boundary conditions for 
WRF simulations, also seemed to affect the accuracy of meteorological 
predictions. For example, Monk et al. (2019) compared WRF predictions 
in Sydney, Australia, using NCEP Final (FNL) Operational Global Anal
ysis and European Centre for Medium-Range Forecasting (ECMWF) 
Reanalysis (ERA) Interim reanalysis data and found that model results 
using FNL were better than those of ERA-Interim. Another study by Tao 
et al. (2020) reported similar findings from Beijing. The impact of 
different meteorological initial and boundary conditions (GFS and 
Reanalysis II) on the model was evaluated by (Ritter et al., 2012), and 
one of their conclusions was that the GFS model had a higher resolution, 
leading to slightly better results. 

Grid resolution was another factor commonly reported in air quality 
modelling. Many studies have been conducted to investigate the influ
ence of resolution on model simulations in different regions. For 
instance, Pan et al. (2017) compared WRF meteorology fields at 1 and 4 
km resolution and found no significant differences in temperature, wind, 
PBL, and cloud fraction between the models. Tao et al. (2020) deter
mined that with an increased resolution from 3 to 1 km, the mean bias 
(MB) of T2 reduced from 2 ◦C to 1.7 ◦C, and the 1 km resolution simu
lation represented meteorological field magnitudes and temporal trends 
better. Arunachalam et al. (2006) indicated that no significant differ
ence existed when predicting simulated air quality using 4 and 12 km 
resolutions, and there was an insignificant difference between 4 and 36 
km resolution models in North Carolina. Jiang and Yoo (2018) showed 
that the simulation results at both 4 and 12 km resolutions reproduced 
the PM2.5 measurements, but the predictions at 12 km resolution 
generally showed better results and were much less computationally 
intensive than those at the 4 km resolution. Liu et al. (2020b) found that 
model resolution could cause a substantial difference in the population 
exposure and health burden estimates of O3 in Nanjing. The inconsistent 
findings among these studies indicate that the impact of grid resolution 
needs to be studied further using different model practices. 

The purpose of this study is to evaluate the performance of the WRF/ 
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CMAQ air quality modelling system for the key gas- and particulate- 
phase pollutants in the YRD region during the EXPLORE-YRD 
campaign. Here, we also discuss the impacts of different meteorolog
ical reanalysis data and grid resolutions on CMAQ performance in the 
YRD region. The validation of the model results should provide the 
source apportionment and chemical evolution of O3 and PM2.5 for the 
subsequent modelling studies as well as the emission control strategy 
analysis for the YRD region. 

2. Methods 

2.1. Meteorological simulations 

Meteorological conditions were simulated using the WRF model 
version 4.0 with two different sets of reanalysis data—FNL and ERA5. 
The 6 h FNL Operational Global Reanalysis data are the NCEP data from 
the U.S. National Centre for Atmospheric Research (NCAR), with a 
spatial resolution of 1.0 ◦ × 1.0 ◦ (https://rda.ucar.edu/datasets/ds 
083.2/). These data were obtained from the Global Data Assimilation 
System (GDAS), which continuously collects observational data from the 
Global Telecommunications System (GTS) and other sources for many 
analyses. The collected parameters include such meteorological pa
rameters as ground pressure, sea level pressure, geopotential tempera
ture, sea surface temperature, soil temperature, ice cover, relative 
humidity, U wind, and V wind. The FNL data have been widely used in 
many studies to simulate meteorological conditions and air quality in 
different regions. For example, Yusoff et al. (2019) applied the FNL 
meteorological data to calculate the backward trajectory using the 
hybrid single-particle Lagrangian integral trajectory model and evalu
ated the spatio-temporal distribution characteristics of ground-level O3 
in Malaysia at night. Nguyen et al. (2019) assessed the impact of future 
potential climate change on PM2.5 and O3 air quality in Southeast Asia. 
Kota et al. (2018) utilised the NCEP FNL data to drive the WRF/CMAQ 
model and simulated gas and particulate air pollutants in India. The FNL 
data have also been commonly used to drive WRF and air quality studies 
in China. For instance, Zhang et al. (2019) studied the PM2.5 pollution 
event process in Chinese coastal cities. Wang et al. (2019b) simulated 
and analysed the effects of ship emissions on O3 in YRD, China, using the 
WRF-Chem model. Wang et al. (2019a) investigated the response of 
PM2.5 and O3 concentrations to changes in meteorological conditions 
and emissions in China using the WRF/CMAQ model. 

ERA5 is the fifth generation ECMWF atmospheric global climate 

reanalysis data and is based on the Integrated Forecasting System (IFS) 
Cy41r2, which was operational in 2016 (Hersbach et al., 2020). The 
ECMWF ERA5 reanalysis data in WRF have the following specifications: 
a horizontal resolution of 0.3 × 0.3 and a temporal resolution of 6 h. It 
includes atmospheric parameters (e.g. air temperature, pressure, and 
wind at different altitudes) and surface parameters (e.g. rainfall, soil 
moisture content, ocean surface temperature, and wave height) updated 
((C3S), 2017). Tao et al. (2020) used ERA5 as the meteorological driver 
and analysed the impact of model resolution on predicted meteorolog
ical conditions and air quality. They also simulated human exposure to 
PM2.5 and O3 in Beijing, China. 

Herein, the meteorological fields were simulated using the FNL and 
ERA5 reanalysis data between 17 May and June 17, 2018. The WRF v4.0 
model with the research core was used for this study. The spin-up of the 
model equalled 2 d. Three nesting domains with horizontal resolutions 
of 36, 12, and 4 km were used. The 36 km domain covered China and the 
surrounding countries with 137 × 107 grids; the 12 km domain covered 
eastern China with 127 × 202 grids; and the 4 km domain covered the 
entire YRD region with 238 × 268 grids (Fig. 1). The major physics 
options are listed in Table 1. 

2.2. Air quality simulations 

An updated version of CMAQ v5.0.2 was applied to simulate air 
quality from May to June 2018. The update was made in the SAPRC11 
gas-phase photochemical mechanism model (Carter and Heo, 2012), 
where a more detailed isoprene oxidation scheme was used (Hu et al., 
2017c). Updates were also made in the aerosol treatment processes to 
include (1) the heterogeneous formation of NO3

− and SO4
2− , following the 

methods described by Ying et al. (2014), and (2) the heterogeneous 

Fig. 1. WRF/CMAQ domain configuration: (a) three domains for simulations and (b) the geographical distribution of six cities in the Yangtze River delta (including 
TZ: Taizhou, HZ: Hangzhou, NJ: Nanjing, SH: Shanghai, XZ: Xuzhou, HF: Hefei). 

Table 1 
WRF physics options.  

Physics Option D01 (36 km)& D02 (12 km)&D03 (4 km) 

Microphysics Thompson scheme 
Longwave radiation rrtmg scheme 
Shortwave radiation rrtmg scheme 
Surface layer Revised MM5 Monin-Obukhov scheme 
Land surface Unified Noah land-surface mode 
Planetary Boundary Layer YSU scheme 
Cumulus Parameterization Grell-Freitas ensemble scheme  
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formation of secondary organic aerosol SOA from dicarbonyls, isoprene 
epoxy diol, and methacrylic acid epoxide, as described in (Hu et al., 
2017c; Li et al., 2015b; Ying et al., 2015). The updated CMAQ v5.0.2 
model with the 36 km horizontal resolution was applied to simulate air 
quality in 2013 in China (Hu et al., 2016b, 2017b). The model perfor
mance of PM2.5 and O3 was validated against ambient measurements, 
with an average mean fractional bias of − 0.35, mean fractional error of 
0.52 for daily PM2.5, mean normalised bias of 0.34, and mean normal
ised error of 0.49 for daily maximum O3 in over 60 cities in China. More 
details on the CMAQ updates and configurations can be found in Hu 
et al. (2016), Hu et al. (2017b), and references therein. 

The simulation period was set from May to June 2018. A total of 18 
vertical layers were used, among which 8 layers were distributed below 
a height of 1 km with a high resolution to describe the atmospheric 
boundary layer structure in detail, whereas the height of the ground 
layer was approximately 35 m. The Multi-resolution Emission Inventory 
for China (MEIC, 2016) (http://www.meicmodel.org) was used to 
retrieve the anthropogenic emissions and biogenic emissions generated 
using the Model for Emissions of Gases and Aerosols from Nature 
(MEGAN) version 2.1 (Guenther et al., 2012). The chemical reaction 
mechanism of the gas phase was SAPRC11, and the aerosol reaction 
mechanism was Aero6. Other configurations followed the description 
provided in Hu et al. (2016). 

2.3. Measurement data and evaluation metrics 

The EXPLORE-YRD campaign provided PM2.5, O3, and meteorolog
ical data at various Taizhou monitoring sites. The sampling site was 
located at Taizhou meteorological radar station (lat 32◦35′ N, long 
119◦57’ E), Jiangsu Province, with a sampling port located 3 m above 
the ground. The weather data were provided directly from the site from 
14 May to June 18, 2018, with a temporal resolution of 60 s. Temper
ature, humidity, wind direction, and wind speed were processed for a 
time resolution of 1 h. Pollutant concentration was collected from 17 
May to June 17, 2018 for a total of 31 d. PM2.5 with a time resolution of 
60 s was obtained using a TEOM 1400 ab aerosol mass concentration 
monitor. EC/OC was analysed using the online EC/OC analyser, with a 
temporal resolution of 30 min (Hu et al., 2012). SO4

2− , NO3
− , and NH4

+

were acquired using an online collection and analysis system of 
water-soluble ions of gas/aerosol with a time resolution of 30 min (Dong 
et al., 2012). The pollutant data mentioned above were calculated to 
obtain hourly and daily observations. O3 was measured using an ultra
violet photometric analyser (Model 49i, Thermo Fischer Scientific, 

USA), with a time resolution of 60 s. Hourly O3 concentrations were then 
averaged, and the daily maximum 8 h O3 concentrations (O3-8 h) were 
calculated for each day. The processed observational data were 
compared with the simulated data. 

In addition to the ambient data measured at the Taizhou station, air 
quality and meteorological data were collected in five other major cities 
in YRD (i.e., Shanghai, Nanjing, Hangzhou, Hefei, and Xuzhou), with 
their locations depicted in Fig. 1. Hourly PM2.5 and O3 concentrations in 
the five cities from May to June 2018 were downloaded from the website 
of the China National Environment Monitoring Centre (http://113 
.108.142.147:20035/emcpublish). Meteorological observation data 
were obtained from the National Centres for Environmental Prediction 
(ftp://ftp.ncdc.noaa.gov/pub/data/noaa/). 

The statistical metrics of the mean bias (MB), mean error (ME), and 
root mean square error (RMSE) were calculated to evaluate the meteo
rological predictions as follows: 

MB=
1
N

∑N

i=1
(Mi − Oi), (1)  

ME=
1
N

∑N

i=1
|Mi − Oi|, (2)  

RMSE=

[
1
N

∑N

i=1
(Mi − Oi)

2

]1/2

, (3)  

where N is the total number of data points; Mi is the ith predicted value; 
and Oi is the ith observed value. The model performance benchmarks of 
these metrics for the temperature at 2 m (T2), wind speed at 10 m (WS), 
and wind direction at 10 m (WD), as proposed by Emery et al. (2001), 
are listed in Table 2. 

The statistical metrics of normalised mean deviation (NMB) and 
normalised mean error (NME) were calculated to evaluate the air quality 
predictions as follows: 

NMB=

∑N
i=1(Mi − Oi)
∑N

i=1Oi
, (4)  

NME=

∑N
i=1|Mi − Oi|
∑N

i=1Oi
. (5) 

The model performance benchmarks of NMB and NME for PM2.5 and 
O3, as suggested by Emery et al. (2017), are listed in Table 3. 

Table 2 
Meteorological simulation effects of 6 cities in the Yangtze River Delta region during the EXPLORE-YRD campaign. (OBS: the observed average; FNL and ERA5: the 
simulated averages of FNL and ERA5, respectively; MB: mean bias; ME: mean error; RMSE: root mean square error).    

Hangzhou Hefei Nanjing Shanghai Taizhou Xuzhou Bench-mark 

T2 ◦C OBS 24.58 24.17 23.89 24.24 23.18 25.04  
FNL ERA5 25.80 26.19 26.26 26.48 23.83 24.36 22.92 23.59 22.46 22.87 25.92 25.62  
MB 1.22 1.61 2.09 2.31 − 0.06 0.47 ¡1.32 ¡0.65 ¡0.72 − 0.31 0.87 0.57 ≤±0.5 
ME 1.50 1.81 2.21 2.39 1.16 1.15 1.53 1.36 1.35 1.38 1.30 1.25 ≤2.0 
RMSE 1.90 2.20 2.49 2.65 1.41 1.41 1.81 1.65 1.66 1.77 1.60 1.52  

RH % OBS 78.16 77.60 77.23 74.42 74.38 62.90  
FNL ERA5 63.23 63.89 55.48 59.04 66.46 68.23 71.22 70.01 69.08 72.45 46.83 51.57  
MB − 14.93 − 14.27 − 22.12 − 18.56 − 10.77 − 9.00 − 3.20 − 4.40 − 5.29 − 1.92 − 16.08 − 11.33  
ME 17.84 16.46 24.61 20.37 14.57 12.72 10.97 11.68 10.60 10.38 18.12 17.52  
RMSE 20.60 18.86 26.26 22.73 16.89 15.13 13.88 13.80 13.53 13.05 20.76 19.59  

WS m/s OBS 2.33 2.26 2.39 3.31 2.37 1.81  
FNL ERA5 2.25 2.38 2.27 2.31 2.89 2.90 0.74 0.81 3.08 2.96 2.99 3.11  
MB − 0.07 0.05 0.01 0.05 0.50 0.51 ¡2.57 ¡2.51 0.71 0.59 1.18 1.30 ≤±0.5 
ME 0.82 0.84 1.49 1.66 0.78 0.88 2.57 2.51 1.64 1.64 1.35 1.32 ≤2.0 
RMSE 1.08 1.09 1.83 1.99 0.97 1.13 2.76 2.67 2.01 2.02 1.50 1.52 ≤2.0 

WD ◦ OBS 137.31 153.84 145.66 136.84 139.09 157.10  
FNL ERA5 148.37 149.17 141.31 159.00 123.16 128.89 210.70 141.28 135.14 129.32 155.68 156.08  
MB 11.06 11.86 ¡12.53 5.16 ¡22.49 ¡16.77 73.86 4.44 − 3.96 − 9.77 − 1.42 − 1.02 ≤±10 
ME 65.88 63.63 36.15 33.84 36.80 36.23 133.04 96.37 36.78 36.84 41.70 23.19 ≤±30 
RMSE 118.09 115.35 65.62 51.17 53.47 54.91 162.91 125.12 74.71 61.64 85.87 28.85   

X. Wang et al.                                                                                                                                                                                                                                   

http://www.meicmodel.org
http://113.108.142.147:20035/emcpublish
http://113.108.142.147:20035/emcpublish
ftp://ftp.ncdc.noaa.gov/pub/data/noaa/


Atmospheric Environment 246 (2021) 118131

5

3. Results 

3.1. Evaluation of meteorological and air quality predictions using FNL 

3.1.1. Meteorological predictions 
Table 2 shows model performance for the temperature at 2 m (T2), 

relative humidity at 2 m (RH), WS, and WD, with the FNL reanalysis data 
during the modelling period (Table 2 also includes the results obtained 
using the ERA5 data, which are discussed in Section 3.2). Using the FNL 
reanalysis data, T2 was generally over-predicted in Hangzhou, Hefei, 
and Xuzhou and underestimated in Nanjing and Taizhou. The MB value 
of T2 in Taizhou was - 0.72 ◦C and exceeded the benchmark (±0.5 ◦C), 
whereas the ME value was 1.35 ◦C and stayed within the benchmark 
(2.0 ◦C). The MB (- 0.06 ◦C) and ME (1.16 ◦C) values in Nanjing met the 
benchmark. The MB values in the other five cities (Hangzhou 1.22 ◦C, 
Hefei 2.09 ◦C, Shanghai - 1.32 ◦C, Taizhou - 0.72 ◦C, Xuzhou 0.87 ◦C) did 
not meet the benchmark, while ME satisfied the benchmark, except in 
Hefei (2.21 ◦C). The MB values in all analysed cities ranged from - 
0.06 ◦C to 2.4 ◦C and were lower than the average values across China 
from 2013, as reported by Hu et al. (2016a), although the ME values 
were slightly higher in this study. No benchmarks were suggested for the 
MB and ME values of RH. RH was underestimated in all the cities, 
consistent with the study by Hu et al. (2016a). The average observed WS 
ranged from 1.81 to 3.31 m s− 1, indicating relatively calm conditions 
during the campaign. Overall, WS was over-predicted by WRF with FNL, 
except in Shanghai and Hangzhou, but the predictions generally agreed 
well with the observations, as indicated by the MB, ME, and RMSE 
values. The over-predictions of low wind speeds by WRF, especially for 
wind speeds of less than 3 m s− 1, have been previously reported 
(Angevine et al., 2012; Fast et al., 2014; Hu et al., 2015, 2016a; 
Michelson et al., 2010). The ME values met the benchmark in five cities, 
except Shanghai (2.57 m s− 1). The RMSE values met the benchmark in 
four cities, except Shanghai (2.76 m s− 1) and Taizhou (2.01 m s− 1), 
whereas MB met the benchmark only in Hangzhou (− 0.07 m s− 1), Hefei 
(0.01 m s− 1), and Nanjing (0.50 m s− 1). The prevailing WD during the 
campaign was from the southeast, as indicated by the observations. WRF 
predicted WD properly in Taizhou (- 3.96◦) and Xuzhou (- 1.42◦) but 
presented a 10◦–80◦ bias in the other four cities. The ME values in all 
cities were slightly greater than the benchmark, especially in Hangzhou 
(65.88◦) and Shanghai (133.04◦). Similar performance of WD was re
ported by Hu et al. (2016a). 

Fig. 2 shows the comparison of observed and predicted hourly T2, 
RH, WS, WD, and PBL in Taizhou during the campaign. The diurnal and 
daily variations of T2 and RH reproduced WS well, showing no obvious 
diurnal and daily variations in Taizhou, whereas the WRF model over- 
predicted WS. Previous studies have pointed out that the WRF model 
tends to over-predict slow winds (Gsella et al., 2014; Hu et al., 2015; 
Zhang et al., 2014). In most cases, easterly winds (including east, 
northeast, and southeast) predominated in Taizhou, and the model 
predicted WD values agreed well with the observations. Generally, PBL 
predicted by ERA5 was slightly lower than that by FNL, especially 

during the peak period. 

3.1.2. Air quality predictions 
Table 3 shows CMAQ model performance for PM2.5 and O3-8 h in the 

six cities with the predicted meteorological conditions using FNL (and 
ERA5, as discussed in Section 3.2). In general, PM2.5 concentrations 
predicted using FNL were similar to the observed concentrations in the 
five cities, except in Shanghai (- 36%). The NME (50%) and NMB 

Table 3 
Model performance of PM2.5 and O3-8 h concentrations in 6 cities in the Yangtze River Delta region from May to June 2018 (OBS: the observed average; FNL and ERA5: 
the simulated averages of FNL and ERA5, respectively; NMB: normalised mean bias; NME: the normalised mean error).    

Hangzhou Hefei Nanjing Shanghai Taizhou Xuzhou Bench- 
mark 

PM2.5 

May–Jun 
OBS 35.96 44.36 36.94 43.14 49.51 43.62  

μg/m3 FNL ERA5 30.95 31.55 47.58 47.41 39.95 39.62 27.76 28.11 37.70 39.09 39.31 38.57   
NMB − 14% − 12% 7% 7% 8% 7% ¡36% ¡35% − 24% − 21% − 10% − 12% <±30%  
NME 34% 35% 29% 35% 36% 26% 42% 41% 32% 31% 34% 30% <50% 

O3 May–Jun OBS 145.60 148.37 154.37 142.22 161.56 172.19  
μg/m3 FNL ERA5 129.93 133.58 130.15 138.12 123.62 129.20 110.40 113.25 137.70 138.18 139.09 144.08   

NMB − 11% − 8% − 12% − 7% ¡20% ¡16% ¡22% ¡20% − 15% − 14% ¡19% ¡16% ≤±15%  
NME 27% 31% 24% 19% 25% 22% 24% 23% 22% 21% 24% 19% ≤30%  

Fig. 2. Comparison of temperature at 2 m (T2), relative humidity (RH), wind 
speed (WS) at 10 m, wind direction (WD) at 10 m, and planetary boundary 
layer height (PBL) simulated by FNL and ERA5 meteorological data and 
observation values for Taizhou during the EXPLORE-YRD campaign. 
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Fig. 3. Comparison of PM2.5 concentrations and observations simulated using FNL and ERA5 meteorological data in six cities.  

Fig. 4. Comparison of MAD8h O3 concentrations and observations simulated using FNL and ERA5 meteorological data in six cities.  
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(±30%) values in the other five cities met the benchmark. Most NMB 
values were negative, except in Hefei (7%) and Nanjing (8%), indicating 
that the PM2.5 total mass was under-predicted by CMAQ. The perfor
mance of O3-8 h with FNL was worse than the performance of PM2.5 with 
FNL. The NME values satisfied the O3-8 h benchmark (±15%) in all 
cities, and the NMB value satisfied the O3-8 h benchmark (30%) in 
Hangzhou (11%), Hefei (- 12%), and Taizhou (- 15%) and was only 
slightly higher than the benchmark of 15% in Nanjing (- 20%), Shanghai 
(- 22%), and Xuzhou (- 19%). O3-8 h was also under-predicted in most 
cities, as indicated by the small negative values. 

Figs. 3 and 4 illustrate the time series of predicted and observed 24 h 
PM2.5 and O3-8 h concentrations in the six cities, respectively. PM2.5 
concentrations were consistently under-predicted by CMAQ with the 
FNL meteorology. The observed PM2.5 exhibited strong day-to-day 
variations during the campaign, with low concentrations of less than 
10 μg/m3 and high concentrations exceeding 100 μg/m3 (29–30 May 
2018). The CMAQ predictions with FNL did not capture the strong day- 
to-day variations in PM2.5 concentration. The high PM2.5 concentrations 
were largely missed in the predictions. Compared to PM2.5, the perfor
mance of O3-8 h was better, although the model predictions were lower 
than the actual observations and missed the high O3 values that occurred 
in early June 2018. 

Further model evaluation of PM2.5 components was performed using 
the data measured during the campaign in Taizhou. Fig. 5 shows the 
comparison of predicted and observed SO4

2− , NO3
− , NH4

+, OC, and EC 
concentrations. With the FNL reanalysis data, the predicted EC con
centrations agreed well with the observed values, with an NMB of 141% 
and an NME of 141%. The predicted NO3

− concentrations were higher 
than the observed values, with an NMB of 70% and an NME of 82%. All 
other components were under-predicted, with an NMB of - 23%, - 54%, 
and - 38% for SO4

2− , NH4
+, and OC, respectively, and an NME of 44%, 

67%, and 45% for SO4
2− , NH4

+, and OC, respectively. The high PM2.5 
pollution on 29–30 May 2018 was largely due to the contribution of 
SO4

2− , NO3
− , NH4

+, and OC, but the model with FNL did not capture the 
peak values. 

3.2. Impact of reanalysis data on meteorological and air quality 
predictions 

To analyse the impact of the reanalysis data on air quality pre
dictions, another set of WRF/CMAQ simulations was conducted using 
the ERA5 reanalysis data with the same model configurations and 
emissions. The statistical results of meteorological predictions using 
ERA5 are shown in Table 2. For T2, ERA5 yielded slightly higher pre
dictions, except in Xuzhou, compared to those with FNL. The MB values 
indicated that the predictions by ERA5 were better than by FNL, meeting 
the benchmark (±0.5 ◦C) in three more cities, i.e. Shanghai (- 0.65 ◦C), 
Taizhou (- 0.31 ◦C), and Xuzhou (0.57 ◦C). The ME values were similar 
between the two reanalysis datasets. ERA5 also yielded better RH pre
dictions, with smaller negative MB values in most cities, except for 
Shanghai’s higher MB (- 4.40%) and ME (11.68%). The WS values 
predicted with ERA5 were also over-predicted, and the over-prediction 
was more than that with FNL, except for Taizhou. In general, the T2 and 
RH simulation values obtained with the ERA5 dataset were closer to the 
actual observations, while the WS and WD simulation results were better 
using the FNL dataset. Our results are in line with the findings of Tao 
et al. (2020). 

The impact of reanalysis data on PM2.5 and O3-8 h are presented in 
Figs. 3 and 4. The predicted O3-8 h concentrations driven by the two 
reanalysis data were comparable, and the predictions using ERA5 were 
generally higher than those using FNL. The PM2.5 concentrations ob
tained using the ERA5 data set showed the same change. This is also 
reflected in the NMB and NME values listed in Table 2. Compared to 
FNL, the improvement in the PM2.5 prediction by ERA5 was mainly due 
to the improved predictions of SO4

2− . NMB was improved from - 23% to - 
15% for SO4

2− , and NME was improved from 44% to 41% for SO4
2− . EC 

was also improved with ERA5, where NMB and NME changed from 
141% to 133% and from - 38% to - 37%, respectively. However, OC was 
still under-predicted, especially on days with high OC concentrations, 
partly due to incomplete secondary organic aerosol treatment in the 
model, which included incomplete precursors and formation processes. 
EC predictions using ERA5 were slightly biased compared to the 

Fig. 5. Comparison of PM2.5 component concentrations and observations simulated using FNL and ERA5 meteorological data in Taizhou.  
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observations and predictions using FNL. 
Specifically, CMAQ with the ERA reanalysis data captured the high 

PM2.5 pollution event in Taizhou on 29–30 May 2018. The peak PM2.5 
observation equalled 120.25 μg/m3. The predicted peak concentration 
with ERA5 was 89.99 μg/m3, while it was 81.89 μg/m3 with FNL. 

To further analyse this event, Fig. 6 shows hourly T2, RH, WS, and 
PBL in Taizhou from 27 May to June 2, 2018 predicted with FNL and 
ERA5. Fig. 6 shows that the T2 predictions are similar during the event. 
The observed RH was nearly 100% during the early morning hours be
tween 27 May and June 1, 2018. Both models under-predicted the high 
RH conditions on 29–31 May 2018, but ERA5 yielded slightly higher 
results than FNL. In addition, ERA5 predicted lower WS on 28–29 May 
2018 compared to FNL. ERA5 also predicted lower PBL on 27–28 May 
2018 compared to FNL. 

PM2.5 concentration predicted by ERA5 was higher than that pre
dicted by FNL between 5 June and June 7, 2018. Fig. 2 shows the lower 
PBL values predicted by ERA5 during this period. Meanwhile, ERA5 
predicted higher SO4

2− , NO3
− , and NH4

+ concentrations during this period 
compared to FNL. Therefore, the lower PBL values predicted by ERA5 
led to the higher concentrations of NO3

− , SO4
2− , and NH4

+, while the lower 
predicted WS values by ERA5 on the days before May 30, 2018 accu
mulated the pollutants in the surface layer. 

3.3. Impact of grid resolution on air quality predictions 

Fig. 7 compares the predicted PM2.5 and O3-8 h acquired with the 36, 
12, and 4 km grid resolutions. The results show that for both FNL and 
ERA5 reanalysis data, the model resolution had a negligible impact on 

Fig. 6. Comparison of meteorological data and observations simulated using FNL and ERA5 meteorological data during 27 May to June 2, 2018 in Taizhou.  

Fig. 7. Comparison of PM2.5 (a, b) and 
MAD8h O3 (c, d) resolution simulations 
using two kinds of meteorological data, FNL 
and ERA5, in Taizhou City from May to June 
2018 (black dots represent observations; red 
lines represent the value of 36 km horizontal 
resolution; blue line indicates the value of 
12 km horizontal resolution; purple line in
dicates the value of 4 km horizontal resolu
tion). (For interpretation of the references to 
colour in this figure legend, the reader is 
referred to the Web version of this article.)   
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the air quality predictions in Taizhou. Additionally, the PM2.5 pre
dictions at 36 km resolution agreed better with the observational data 
than those at 12 and 4 km. Therefore, a higher resolution does not al
ways yield better predictions. In this study, the spatial resolution of the 
emission inputs was 25 × 25 km. Such a resolution is likely an important 
factor that affects model performance with higher grid resolutions. 
Figs. 8 and 9 show the impact of grid resolution on the PM2.5 and O3-8 h 
predictions in other YRD cities, similar to the findings in Taizhou. 

4. Conclusions 

In this study, we applied the WRF/CMAQ air quality modelling 

system to simulate air quality during the EXPLORE-YRD campaign. We 
used two different sets of reanalysis data—FNL and ERA5—to drive the 
model predictions. Model predictions were evaluated using the 
measured PM2.5 composition data in Taizhou and other routine mea
surements of O3 and PM2.5 in the other key cities of the YRD region (i.e. 
Shanghai, Nanjing, Hangzhou, Hefei, and Xuzhou). We also discussed 
the impact of different meteorological reanalysis data and grid resolu
tions on CMAQ performance. The following conclusions were drawn 
from this study.  

(1) PM2.5 was generally under-predicted using the FNL and ERA5 
datasets. ERA5 yielded slightly higher PM2.5 predictions during 

Fig. 8. Comparison of PM2.5 resolution simulations using two kinds of meteorological data, FNL and ERA5, in 6 cities from May to June 2018 (black dots represent 
observations; red lines represent the value of 36 km horizontal resolution; blue line indicates the value of 12 km horizontal resolution; purple line indicates the value 
of 4 km horizontal resolution). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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the EXPLORE-YRD campaign. Both reanalysis data sets under- 
predicted the high PM2.5 pollution processes from 29 to 30 May 
2018, indicating that reanalysis data is not the key factor for 
under-predicting extreme PM2.5 pollution processes. The perfor
mance of O3 was similar in both sets of reanalysis data because O3 
is mostly sensitive to temperature predictions, and FNL and ERA5 
yielded similar temperature results. 

(2) Although the average performance of the PM2.5 and O3 pre
dictions yielded by FNL and ERA5 was similar, significant dif
ferences were observed in certain locations on specific days (e.g. 
in Hangzhou from 29 May to June 6, 2018 and in Hefei from 1 to 
3 June 2018). Therefore, the choice of reanalysis data affects the 
predictions of PM2.5 and O3. Model performance depends on 

study locations and episodes, and model performance evaluation 
is strongly suggested for model applications.  

(3) Both the PM2.5 and O3 predictions were not very sensitive to the 
choice of model horizontal resolution (i.e. 36, 12, or 4 km), which 
can be partially explained by the same inventory with a resolu
tion of 25 km used herein. Future studies should further investi
gate this issue when finer resolution emission inventory (e.g. 4 or 
1 km) becomes available. 
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