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ABSTRACT: Peroxyacetyl nitrate (PAN) is produced in the
atmosphere by photochemical oxidation of non-methane volatile
organic compounds in the presence of nitrogen oxides (NOx), and it
can be transported over long distances at cold temperatures before
decomposing thermally to release NOx in the remote troposphere. It
is both a tracer and a precursor for transpacific ozone pollution
transported from East Asia to North America. Here, we directly
demonstrate this transport with PAN satellite observations from the
infrared atmospheric sounding interferometer (IASI). We reprocess
the IASI PAN retrievals by replacing the constant prior vertical
profile with vertical shape factors from the GEOS-Chem model that
capture the contrasting shapes observed from aircraft over South
Korea (KORUS-AQ) and the North Pacific (ATom). The
reprocessed IASI PAN observations show maximum transpacific transport of East Asian pollution in spring, with events over the
Northeast Pacific offshore from the Western US associated in GEOS-Chem with elevated ozone in the lower free troposphere.
However, these events increase surface ozone in the US by less than 1 ppbv because the East Asian pollution mainly remains offshore
as it circulates the Pacific High.
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1. INTRODUCTION
Transpacific transport of Asian air pollution increases back-
ground surface ozone over the Western United States (US),
making it more difficult to meet ozone air quality standards.1−6

This Asian influence has mainly been inferred from models but
has been elusive to detect in observations.1 Observational
studies of transpacific pollution generally use in situ and
satellite measurements of carbon monoxide (CO) as a long-
lived tracer of combustion influence,4,7−10 but elevated CO is
not necessarily associated with ozone pollution. Here, we show
that continuous infrared atmospheric sounding interferometer
(IASI) satellite observations of peroxyacetyl nitrate (PAN),11 a
long-lived photochemical tracer closely associated with ozone
formation, provide a robust indication of transpacific ozone
pollution.
PAN is produced together with ozone by photochemical

oxidation of non-methane volatile organic compounds
(NMVOCs) in the presence of nitrogen oxides (NOx).

12 It
is thermally unstable, with a lifetime of only 1 h at 295 K but
doubling for every 4 K decrease in temperature to reach over 1
month in the mid-troposphere.13 It provides a reservoir for the
long-range transport of NOx from source regions to the remote
atmosphere. PAN formed over East Asia in the planetary

boundary layer (PBL) and ventilated to the cold free
troposphere (FT) can be transported across the North Pacific
before it subsides to release NOx.

9,14 Aircraft observations off
the US west coast show that PAN in descending air on the east
branch of the semipermanent Pacific High decomposes and
promotes efficient formation of ozone in the lower FT at 2−5
km altitude.4,7,8,15 This elevated lower FT ozone could then
affect surface ozone air quality over the Western US by vertical
mixing.16,17 Both aircraft measurements and model results
show that PAN contributes significantly to transpacific ozone
air pollution, adding to the directly transported ozone
produced over East Asia.4,8,18,19

Despite the observation of lower FT ozone plumes off the
US west coast, assessments of Asian pollution contribution to
Western US surface ozone have been inconclusive. The
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elevated FT ozone transported across the Pacific could reflect
the mixing of Asian pollution and stratospheric contribu-
tions.16,20 At US surface sites, the detection of Asian pollution
ozone plumes has been difficult due to dilution during
entrainment and other sources of ozone variability.16,21,22 At
Western US high-altitude sites, although ozone filaments with
concentrations enhanced by up to about 14 ppbv are observed,
it is difficult to attribute their sources.10,23 Models have
difficulty in resolving the transport of pollution plumes across
the Pacific because of numerical diffusion under stretched-flow
conditions.24,25 On the other hand, Asian PAN plumes can be
distinctly detected at Western US high-altitude sites,14,18

suggesting that PAN observations by satellite could be useful
for documenting transpacific transport of ozone pollution.
PAN is detectable from space in the thermal infrared (TIR).

Early observations from the tropospheric emission spectrom-
eter (TES) captured plumes associated with boreal wild-
fires26,27 but were too sparse to detect variability over the
Pacific.28 More recent observations from the cross-track
infrared sounder (CrIS) have detected plumes from wildfires
and metropolitan areas.29,30 The IASI dataset is unique in its
coverage and length, providing continuous global twice-daily
mapping since 2007,11,31 and has shown consistency with
ground-based PAN column measurements at remote sites.32

2. MATERIALS AND METHODS
2.1. IASI PAN Observations. We use PAN column

observations retrieved by version 4 of the artificial neural
network framework for the IASI (ANNI).11,31,33 The IASI
operates on the Metop series of polar-orbiting meteorological
satellites and has a twice-daily global coverage (∼9:30 every
morning and evening) with an elliptical footprint of 12 × 12
km2 at the nadir. The Metop series starts with Metop-A
(launched on 19 October 2006 and retired on 30 November
2021) and goes on with Metop-B (launched on 17 September
2012) and Metop-C (launched on 7 November 2018). The
ANNI provides a continuous record of PAN columns starting
from October 2007. Here, we use the morning data averaged
from Metop-A and Metop-B. The data are highly consistent
between the two instruments (Figure S1).
The ANNI retrieval extracts the hyperspectral range index

(HRI) as the PAN spectral enhancement above the back-
ground in the IASI 760−880 cm−1 spectrum.11 Although there
are overlaps between the spectral signature of PAN and the
other peroxyacyl nitrates (PANs), PAN accounts for at least
80% of the total PANs under different conditions.34−36

Therefore, IASI retrieval represents PAN for most conditions.
A neural network is then used to convert this HRI into a
column density [molecules cm−2]. The background is set by
IASI spectra in the remote troposphere, with an assumed
background PAN column density of 1.9 × 1015 molecules cm−2

from the ECHAM5/MESSy Atmospheric Chemistry (EMAC)
model, and is added to the HRI-retrieved column density.11,37

Retrieved PAN can be lower than this background if the HRI is
negative. The column retrieval of PAN is sensitive to the
temperature at which PAN is located and, therefore, is sensitive
to the assumed PAN vertical distribution. For its baseline
retrieval, the ANNI assumes a constant vertical profile shape of
PAN based on mean values from the EMAC model.37 This can
be a large source of retrieval error because of the large
variability in that shape.12

Here, we reprocess the IASI retrieval with local PAN vertical
profile shapes from the GEOS-Chem chemical transport model

by making use of the averaging kernels that are retrieved
alongside the total column in the ANNI v4 algorithm.33

Specifically, the following equation is applied, which effectively
replaces the constant a priori profile with GEOS-Chem vertical
profiles33

= +X X B
A m

Bm
a

z z
a

z (1)

where Xm is the column retrieved with the updated prior
vertical profile (here from GEOS-Chem), Xa is the baseline
column retrieved with the EMAC prior profile, and B = 1.9 ×
1015 molecules cm−2 is the background column. The retrieval is
done on a 14-level vertical grid, where Az

a is the averaging
kernel describing the sensitivity of the retrieval to PAN at
altitude z, and mz is the normalized prior vertical profile
defining the profile shape

= M B
M B

mz
z
m

z
m (2)

Here, Mm is the total column from GEOS-Chem, Mz
m is the

partial column for the corresponding level, and Bz is the
background vertical profile.11 After applying the averaging
kernel, the retrieval postfilter needs to be reapplied,33 which
means that we remove observations that do not meet criterion
(1) or that meet both criteria (2) and (3) following Franco et
al.11

< ×X B
HRI

5.5 10 molecule cm
a

15 2

(Criterion 1)

<X B( ) 0a (Criterion 2)

| | >HRI 1.5 (Criterion 3)

In the following analysis, we grid IASI pixel data to the 4 ×
5° GEOS-Chem horizontal grid to compare them with GEOS-
Chem model results.
2.2. GEOS-Chem Model. We use GEOS-Chem version

13.4.1 (https://zenodo.org/records/6564702) with updates
described below. GEOS-Chem is driven by meteorological
data from the NASA Modern-Era Retrospective Analysis for
Research and Applications, Version 2 (MERRA-2). We
conduct global model simulations at a horizontal resolution
of 4 × 5° with 72 vertical levels. A finer horizontal resolution is
not used here because the accuracy of free tropospheric
transport is limited by the model’s vertical rather than
horizontal resolution,25 and 4 × 5° horizontal resolution is
sufficient for simulating regional-scale photochemistry.38

Meanwhile, the KORUS-AQ PAN vertical profile from the 4
× 5° simulation is consistent with the 0.5 × 0.625° model
results from our previous study.39 Emissions in GEOS-Chem
are prepared by Harmonized Emissions Component
(HEMCO).40,41 Global anthropogenic emissions are from
the Community Emissions Data System (CEDSv2),42 super-
seded over China by the Multiresolution Emission Inventory
(MEIC).43,44 We add ethanol emissions from seawater and
transportation following Bates et al.45 Other emissions include
NOx from lightning46 and soil,47 MEGANv2 biogenic VOCs,48

dust,49 sea salt,50 and GFEDv4 open-fire emissions.51

Following Fischer et al.,12 we distribute 35% of the open-fire
emissions by mass in the FT and partition, respectively, 40 and
20% of the open-fire NOx emissions directly to PAN and
HNO3.
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We implement in our simulation particulate nitrate
photolysis following Shah et al.38 Shah et al.38 show that
including photolysis of particulate nitrate on sea salt aerosols
can account for the missing NOx source over the oceans in
ATom aircraft observations, while Colombi et al.52 show that it
largely corrects a negative ozone bias against ozonesonde
observations over East Asia. Here, we see an increase in PAN
from nitrate photolysis, which is an important factor for
GEOS-Chem to reproduce IASI PAN (Section 3.2; Figure S2).
We also adopt a slower peroxyacetic acid (PAA) + OH
reaction rate of 3 × 10−14 cm3 molecules−1 s−1 as measured by
Berasategui et al.53 and implemented in the latest GEOS-Chem
model version 14.3.0.54 This rate is 40 times lower than the
previously recommended value, but we find that this has only a
minor effect on simulated PAN.

3. RESULTS AND DISCUSSION
3.1. Vertical Profiles of PAN over South Korea and

the Northeast Pacific. Figure 1a−e show the vertical profiles
of PAN measured from aircraft over South Korea in spring
during the KORUS-AQ campaign55,56 and over the Northeast

Pacific in different seasons during the four ATom campaign
deployments (Figure S3),57,58 compared to the GEOS-Chem
vertical profiles sampled along the flight tracks. KORUS-AQ
and ATom show contrasting vertical profiles over the East Asia
source region and the remote North Pacific. PAN in KORUS-
AQ is enhanced in the PBL with a concentration of 600−700
pptv at 0−1 km decreasing with altitude, flattening to a
uniform concentration of 270 pptv in the FT above 3 km
altitude. This is closely reproduced by GEOS-Chem, where the
PBL enhancement is driven by East Asian anthropogenic
emissions. The vertical profile shapes are reversed over the
North Pacific, with minimum concentrations in the marine
boundary layer (MBL) and increasing concentrations in the
FT above. Such vertical profiles of PAN over the North Pacific
are expected from the cold reservoir aloft and thermal
decomposition during subsidence.12 There is seasonal variation
in the FT vertical profile as expected from different lifting
altitudes for continental pollution transported to the Pacific
with maxima in the lower FT in the winter, in the middle
troposphere in the spring and autumn, and in the upper
troposphere in the summer. The vertical profiles and their

Figure 1. Vertical profiles of peroxyacetyl nitrate (PAN) concentrations in South Korea and the Northeast Pacific. Median observations from (a)
KORUS-AQ aircraft campaign over South Korea and nearby waters (May−June 2016) and from (b−e) ATom aircraft campaign deployments over
the Northeast Pacific (Figure S3) (15-55° N, 180−145° W) in different seasons of 2016−2018 are compared to the GEOS-Chem model sampled
along the aircraft tracks. The KORUS-AQ measurements were made by the Georgia Tech chemical ionization mass spectrometer (GT-CIMS).60,61

The ATom payload included two PAN measurements, the GT-CIMS and the PANTHER (PAN and trace hydrohalocarbon experiment) gas
chromatograph electron capture detector (PECD).62 The GT-CIMS was not included in the summer 2016 deployment.63 Horizontal bars indicate
25th−75th percentiles in the GT-CIMS observations. Normalized mean bias (NMB) and correlation coefficient (r) between observations (GT-
CIMS for KORUS-AQ and PECD for ATom 4) and GEOS-Chem for the spring profiles are shown in the inset in (a, c). (f) IASI PAN averaging
kernels over East Asia and the Northeast Pacific, respectively, averaged over the KORUS-AQ and ATom flight track domains for May 2016.
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seasonality are again well captured by GEOS-Chem, with the
best model performance in the spring that is most pertinent to
this study. Although the model overestimates PAN in the
middle and upper FT in winter, it performs reasonably well in
the PBL and lower FT where concentrations are high. The
underestimate in summer could be due to an underestimate of
PAN production in open-fire plumes12 and biased low
injection heights of fire emissions.59

The vertical profile of averaging kernels Az
a (eq 1) describes

the sensitivity of the satellite retrievals to concentrations as a
function of altitude. Here, we see an order of magnitude
increase in IASI PAN Az

a from the PBL to the FT for the
KORUS-AQ and ATom conditions (Figure 1f). This is a
critical issue for PAN retrieval, considering the systematic
variability of the PAN vertical profile shapes illustrated in
Figure 1a−e. Assuming a single profile globally, as in the
baseline IASI retrieval, can induce large errors. The success of
GEOS-Chem in reproducing the observed variability in the

vertical profile shape indicates that the baseline IASI retrieval
can be reprocessed with the local normalized GEOS-Chem
profiles as prior information, following the method described
in Section 2.1. This reprocessing is also necessary for
comparing GEOS-Chem to the IASI column concentrations.
3.2. Transpacific Transport of PAN Observed by the

IASI. Figure 2a,b compare the baseline IASI retrieval over East
Asia and the North Pacific to the reprocessed retrieval using
local GEOS-Chem normalized vertical profiles for the year
2016. The reprocessed retrieval increases PAN over source
regions and immediately downwind (where PAN peaks at low
altitudes) and decreases PAN in the nonwinter remote
atmosphere (where PAN peaks at high altitudes). The seasonal
maximum over East Asia shifts from summer to spring. There
is also a poleward shift because PAN at higher latitudes tends
to be present at low altitudes due to colder surface
temperatures.12 Column PAN as measured by the IASI is
most sensitive to the FT and so would have relatively little

Figure 2. PAN column densities across the Pacific region in different seasons. Seasonal mean (a) baseline and (b) reprocessed IASI satellite
observations for 2016 are compared to (c) GEOS-Chem model sampled at the locations and times of valid IASI observations. The results shown
are daytime averages for Metop-A and Metop-B observations. White areas have fewer than 40% valid retrievals. The baseline IASI retrieval assumes
a global mean normalized vertical profile from the EMAC model. The reprocessed IASI retrieval uses local normalized vertical profiles from GEOS-
Chem, thus accounting for very different vertical shapes over different regions. Rectangles denote the Northwest Pacific (32−48° N, 142.5−162.5°
E), Northeast Pacific (32−48°N, 147.5−127.5° W), and East Asia (20−50° N, 100−150° E) regions used in the analysis of Section 3.3. The blue
star is the location of the Mt. Bachelor Observatory (MBO) site (44.0° N, 121.7° W; 2.74 km asl).

Figure 3. Daily time series of PAN column densities averaged over (a) Northwest and (b) Northeast Pacific (blue rectangles in Figure 2b) from the
reprocessed IASI PAN observations and from the concurrent GEOS-Chem simulation in 2016. The results shown are daytime averages for Metop-
A and Metop-B observations. The evening data are highly consistent with the morning data over the North Pacific, with half-day deviations as
compared with morning data for some NE Pacific events (Figure S5). Also shown are the Asian pollution enhancements of 720 hPa ozone
concentrations in GEOS-Chem as diagnosed by the difference with a sensitivity simulation that zeros anthropogenic emissions in the large white
rectangle of Figure 2b.
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diurnal variation, even over source regions. We used the
reprocessed PAN retrievals for further analysis.
We see from the reprocessed PAN retrievals in Figure 2b

that PAN over East Asia peaks in the spring, reflecting a
combination of active photochemistry and low temperatures.
This is also the season when the Asian outflow to the Pacific is
the strongest,64 stretching longitudinally across the Pacific. In
the summer and autumn, the Asian outflow is shifted to higher
latitudes. The wintertime outflow is limited by the weak source
of PAN and the suppressed lifting. Figure 2c shows the GEOS-
Chem PAN columns sampled at the locations of valid IASI
retrievals. GEOS-Chem reproduces closely the reprocessed
IASI observations over East Asia and across the Pacific,
including the seasonality. It underestimates PAN at high
latitudes over Russia and Canada, possibly due to the
underestimate of PAN production in open-fire plumes.12

3.3. Transpacific PAN Events and Implications for
Transpacific Ozone Pollution. Figure 3 shows the full-year
IASI and GEOS-Chem time series of daily PAN column
concentrations over the NW and NE Pacific regions (blue
rectangles in Figure 2b) most relevant for the transpacific
transport of Asian pollution to the US. Also shown in Figure 3
are the East Asian anthropogenic pollution enhancements of
ozone concentrations in the lower free troposphere at 720 hPa
(≈3 km altitude) in GEOS-Chem, as computed by difference
with a sensitivity simulation in which anthropogenic NOx,
NMVOC, and CO emissions over East Asia (large white
rectangle in Figure 2b) are set to zero except for airplanes,
ships, and fertilizer-driven soil emissions. We focus on ozone
enhancement at the lower free troposphere because it controls
the surface ozone background.17 Ozone at 720 hPa is
representative of the 2−5 km altitude range (Figure S4).
PAN peaks in April over both the NW and NE Pacific and has
a secondary maximum in autumn, consistent with the
meteorological seasonality of the Asian outflow to the Pacific.64

GEOS-Chem reproduces the observations closely except for a
20% underestimate over the NW Pacific from October to
November and a 40% overestimate over the NE Pacific in
January. Monthly IASI PAN variations are reproduced by the
GEOS-Chem model with correlation coefficients, respectively,
of 0.92 and 0.69 over the NW and NE Pacific. Day-to-day

variability including events of Asian outflow and transpacific
transport is also captured by GEOS-Chem, with deseasonalized
correlation coefficients of 0.42 over the NW Pacific and 0.58
over the NE Pacific. In the GEOS-Chem model, the East Asian
pollution PAN enhancement (PAN produced by East Asian
anthropogenic emissions as represented in the sensitivity
simulation) is strongly correlated with total PAN in the daily
time series over the NW and NE Pacific, with a correlation
coefficient, respectively, of 0.81 and 0.78, indicating that East
Asian pollution effectively drives high-PAN events.
Asian pollution influence on ozone over the Western US is

known from observations and models to peak in April−
May3,65−68 and this is apparent in the IASI PAN observations.
Figure 3 shows that the Asian pollution enhancement of ozone
over the NW and NE Pacific as simulated by GEOS-Chem
closely tracks IASI PAN, peaking in April, indicating that IASI
PAN can serve as a tracer for ozone pollution. The Asian
pollution enhancement of ozone over the NW Pacific shows a
second peak in June, due to direct transport of ozone during
the ozone peak season (May−July) in East Asia.52 There is no
associated ozone enhancement over the NE Pacific because
transport in the summer is shifted to higher latitudes (Figure
2). Although ozone observations are also available from the
IASI, they have too little sensitivity to the lower troposphere.69

The observed PAN is a better indicator of Asian ozone
pollution.
Figure 4a zooms in on the April−May 2016 period of Figure

3 time series over the NE Pacific. There are four PAN peaks
(April 12, April 23, May 3, and May 22), and GEOS-Chem
captures them all with a day-to-day correlation coefficient of
0.77. The episodic nature of transpacific pollution events is
well known, driven by frontal lifting over the Asian continent
and the position of the North Pacific High.4,64 We conducted
GEOS-Chem sensitivity simulations zeroing out separately
East Asian anthropogenic emissions, open-fire emissions, and
Southeast Asia biogenic VOC emissions.70 We find that the
high-PAN events during April−May 2016 over the NE Pacific
are mainly from East Asian anthropogenic enhancements,
except for the May 22−24 event where fires are also important.
Open fires in Russia could dominate the transpacific transport

Figure 4. Daily PAN column densities and relation to Asian ozone pollution enhancements at 720 hPa averaged over the Northeast Pacific during
April−May 2016. (a) Time series is an excerpt from Figure 3b. Arrows indicate the PAN peaks in the IASI data. The vertical bars are standard
errors (SEs) on those observed averages. (b) Scatterplot shows the daily correlation between PAN and Asian ozone pollution enhancements in the
GEOS-Chem model. The inset in the left panel is the correlation coefficient (r) between the IASI and GEOS-Chem PAN, and the inset in the right
panel is that between PAN and 720 hPa East Asian pollution ozone enhancement in GEOS-Chem.
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of PAN in some years.18 We find that Southeast Asia makes
little contribution to the events.
High-PAN events in GEOS-Chem over the NE Pacific are

associated with East Asian pollution ozone enhancements at
720 hPa (Figure 4b). The scatterplot shows the relationship
between total PAN columns and Asian ozone pollution
enhancements in the model. The strong correlation (r =
0.67) implies that IASI observations of high-PAN events can
be used as a proxy for events of Asian ozone pollution
transported across the Pacific. The dynamic range for Asian
ozone pollution in the model is relatively small, with a
background of 5 ppbv and events peaking at 9 ppbv.
Observations of Asian pollution plumes in the lower FT over
the NE Pacific indicate ozone enhancements of over 40 ppb.7

The weaker enhancements in the model likely reflect the
numerical diffusion of Asian plumes during stretched-flow
transport across the Pacific.24,25

Finally, we link the transpacific transport of PAN to East
Asian pollution ozone enhancements in Western US surface air
in April−May as diagnosed by GEOS-Chem (Figure 5). Here,
we define high-PAN events in the model as April 10−12, April
21−26, May 2−5, and May 22−24, covering the four PAN
peaks identified in Figure 4a. PAN during those events
averages 3.9 × 1015 molecules cm−2, 35% higher than the
background conditions (defined as periods outside of the high-
PAN events) when PAN averages 2.9 × 1015 molecules cm−2.
We find that Asian pollution ozone enhancements in surface
air over the Western US are not significantly elevated during
these high-PAN events, at most by 1 ppbv on top of the
background Asian pollution enhancement of about 3 ppbv that
reflects hemispheric-scale pollution rather than direct trans-
pacific transport.71 Adding time lags for subsidence of high-
PAN pollution events to the surface does not change this
picture, as illustrated in Figure 5c with a 5-day time lag. Most
of the Asian ozone pollution remains offshore and circulates
around the North Pacific High as it subsides, skirting the US
and eventually being entrained in the tropical easterlies. Such a
circulation for transpacific pollution has been shown in
previous studies.4,8 Dilution during boundary layer entrain-
ment and mixing further reduces the signature of Asian
pollution in the surface air. Even at the Mt. Bachelor
Observatory (MBO) site (2.8 km asl; location shown in
Figure 2b) under direct FT influence, ozone enhancements in
Asian pollution plumes are usually too weak to observe.4 In
contrast, PAN enhancements are readily observable.18 No
PAN observations are available for MBO in spring 2016, but
comparison to the Fischer et al.18 observations in spring 2008

shows consistency with transpacific PAN events observed by
the IASI (Figure S6).
In summary, we have shown that IASI satellite observations

of PAN across the North Pacific provide a proxy for the
transpacific transport of Asian ozone pollution. We reprocessed
the IASI PAN product to use normalized vertical profiles of
PAN concentrations from the GEOS-Chem chemical transport
model as prior information after showing that GEOS-Chem
can reproduce the contrasting vertical profiles observed from
the aircraft over East Asia and over the North Pacific in
different seasons. Transpacific transport of PAN observed by
the IASI is strongest in spring, with a secondary maximum in
autumn, and is highly correlated in GEOS-Chem with the
transpacific transport of Asian ozone pollution. Distinct high-
PAN events of Asian pollution origin are observed over the
Northeast Pacific in spring and are associated with ozone
enhancements in the lower free troposphere, but the impact of
these events on surface ozone in the US is insignificant because
most of the Asian ozone pollution remains offshore in the
circulation around the North Pacific High.
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