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Abstract: We investigated the spatial-temporal characteristics of the correlations between observed
PM2.5 and O3 over China at a national-scale level, and examined the underlying reasons for the
varying PM2.5–O3 correlations by using a chemical transport model. The PM2.5 concentrations were
positively correlated with O3 concentrations for most regions and seasons over China, while negative
correlations were mainly observed in northern China during winter. The strongest positive PM2.5–O3

correlations with correlation coefficients (r) larger than +0.7 existed in southern China during July,
and the strongest negative correlations (r < −0.5) were observed in northern China during January.
It was a very interesting phenomenon that the positive PM2.5–O3 correlations prevailed for high air
temperature samples, while the negative correlations were generally found in cold environments.
Together, the effective inhibitory effect of PM2.5 on O3 generation by reducing photolysis rates and the
strong titration effect of freshly emitted NO with O3 contributed to the strongest negative PM2.5–O3

correlations in northern China during January (i.e., in cold environments). The strongest positive
correlations in southern China during July (i.e., at high temperature), however, were mainly attributed
to the promoting effect of high O3 concentration and active photochemical activity on secondary
particle formation.
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1. Introduction

Fine particulate matter with a diameter of 2.5 µm or less (PM2.5) is an important pollutant in the
atmosphere. Epidemiological studies have revealed a robust correlation between PM2.5 levels and the
morbidity of cardiovascular and respiratory diseases [1,2]. In addition, PM2.5 has strong extinction
abilities, and therefore, reduces atmospheric visibility and affects traffic safety [3,4]. Tropospheric ozone
(O3), as another air pollutant, has adverse effects on human health, ecosystems, and crop growth [5–8].

At present, haze and ozone pollution are the most serious atmospheric environmental problems in
China [9–16]. However, the formation reasons for the complex air pollution characterized by PM2.5 and
O3 are very complex. Although the two important pollutants have different formation mechanisms,
the interactions between them lead to close connections and relations. The complex physical and
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chemical properties of PM2.5 may affect the generation and loss of O3 [12,17], while O3 may influence
atmospheric oxidizing capacity, and therefore, affect the formation of secondary PM2.5 [18,19]. The
interactions between PM2.5 and O3 lead to certain correlations of observed concentrations; however,
the observed correlations may vary in different seasons and different regions [20–25]. Revealing the
rule for PM2.5–O3 correlations over China, as well as investigating the underlying reasons/mechanisms
for the PM2.5–O3 correlations, is the scientific basis and an essential requirement for the coordinated
control of complex air pollution.

The PM2.5 may reduce O3 concentrations by altering the photolysis rate. The main components
of PM2.5, such as sulfate, nitrate, black carbon, and organic carbon, can scatter and absorb solar
radiation directly, and can also alter the optical properties and life cycle of clouds by becoming
cloud condensation nuclei, which in turn, decrease the intensity of incident ultraviolet radiation and
finally reduce the photolysis rate and O3 generation [26–31]. Li et al. [29] investigated the impact
of particulates on O3 via changing photolysis frequencies and reported that the boundary layer O3

below 1 km was reduced by 5.4% over central Eastern China in June 2006. A high O3 concentration
indicates a strong atmospheric photochemical reactivity, which can promote the formation of secondary
particles [19,32–35]. By analyzing concentrations of PM2.5, its compositions and gas pollutants
measured at a rural site (Dian Shan Lake supersite) in the eastern Yangtze River Delta from 23 July to
11 August 2013, Wang et al. [19] found that strong correlations existed between solar radiation and the
production rate of sulfate by gas-phase oxidation, between day-time nitrate and nitrogen dioxide (NO2)
and O3, and between secondary organic aerosol (SOA) and Ox (O3+NO2), which indicated that the
formation of secondary particles (sulfate, nitrate, and SOA) was promoted by photochemical oxidation.

Certain correlations between PM2.5 and O3 were reported in several cities of China, and the
observed PM2.5–O3 correlations varied in different seasons and different regions [20–25,36–39].
Xu et al. [36] analyzed observed pollutant concentrations in Beijing and reported that PM2.5

concentrations were negatively correlated with O3 concentrations with a correlation coefficient
(r) of −0.51 in February 2003, but no statistically significant correlations were found in August 2003.
By analyzing the observed pollutant concentrations provided by Shanghai Environment Monitoring
Center, Shi et al. [38] revealed that PM2.5 concentrations were positively correlated (r = +0.59) with O3

concentrations during ozone-rich days in July and August 2013.
Previous studies revealed correlations between surface-layer PM2.5 and O3 concentrations over

China. However, these studies mostly focused on the individual city and season, which could not
make clear representative sense for comprehensively understanding the PM2.5–O3 correlations over
the whole of China. Furthermore, most of these studies only mentioned the relevant phenomenon,
while the reasons for the PM2.5–O3 correlations have been poorly understood. Although some studies
revealed interactions between PM2.5 and O3, the impacts of PM2.5–O3 interactions on their correlations,
especially the importance of different interactions in different regions and seasons, are still unclear and
need to be further investigated.

This paper aimed to (1) obtain the spatial-temporal characteristics of the correlations between
PM2.5 and O3 at a national-scale level, based on the pollutant concentrations measured at all monitoring
sites of China for the whole year 2016, and (2) examine the underlying mechanisms on the varying
PM2.5–O3 correlations in different regions and seasons using a chemical transport model (GEOS-Chem).
The obtained knowledge is expected to provide a scientific basis for the coordinated control of complex
air pollution over China. The methods, including descriptions of in situ measurements, data analysis,
and model configuration are presented in Section 2. Section 3 shows the results, including observed
PM2.5–O3 correlations, model evaluation, and underlying reasons/mechanisms. The conclusion and
discussion are presented in Section 4.
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2. Methods

2.1. In Situ Measurements and Data Analysis

The Ministry of Ecological and Environment (MEE), formerly the Ministry of Environmental
Protection of the People’s Republic of China (MEP), has begun to release to the public the real-time
monitoring air quality data of six criteria pollutants including PM2.5 and O3 covering most cities in
China since 2013. The observation sites in each city are designed as a mix of urban and background
sites, with most of the sites located in urban areas. According to China’s Environmental Protection
Standards, the β absorption method and the micro oscillating balance method are used to continuously
measure PM2.5 concentrations (“HJ 653-2013”), while the ultraviolet spectrophotometry method is
used to automatically monitor O3 concentrations (“HJ 654-2013”).

The hourly PM2.5 and O3 concentrations can be obtained from the MEE website, from which
we downloaded the concentrations at 1497 sites of the whole China for year 2016. For each site,
the negative or missing values were removed; those sites with less than 80% valid data were also
abandoned. Although the MEE provides hourly PM2.5 and O3 concentrations, the National Ambient
Air Quality Standards (NAAQS, GB3095-2012) sets limits on annual or daily mean concentrations for
PM2.5 and maximum daily 8 h average (MDA8) or hourly mean concentrations for O3. For consistency,
we calculated daily mean PM2.5 concentration and daily MDA8 O3 concentration to conduct correlation
analysis. Following the NAAQS, we conducted the validity treatment for data statistics as follows: the
daily average PM2.5 concentrations were calculated when there were valid data for more than 20 h
during that day; the 8 h average O3 concentrations were calculated when there were valid data for at
least 6 h for every 8 h. Pearson correlation coefficients (r) were calculated for correlation analysis.

The meteorological data of surface temperature over China for the year 2016, which will be used in
Section 3.1 to examine the temperature dependence of PM2.5–O3 correlations, were extracted from the
re-analysis dataset of the ERA-Interim in the European Centre for Medium-Range Weather Forecasts
(ECMWF) [40]. These gridded observation records with a horizontal resolution of 0.25◦ × 0.25◦ were
then bilinearly interpolated to the corresponding air quality monitoring stations, as was done in
Wang et al. [41] and Zhong et al. [42].

2.2. Model Configuration

To investigate the reasons for the varying PM2.5–O3 correlations in different regions and seasons,
we needed to obtain concentrations of PM2.5 components, photolysis rates, etc., at all sites over
China for the year 2016, which were almost unavailable from in situ measurements. Therefore, a
chemical transport model (GEOS–Chem) was used to reproduce the observed PM2.5–O3 correlations
and examine the underlying mechanisms. It was easy to output concentrations of PM2.5 components,
photolysis rates, and other variables for the chemical transport model.

The simulations of PM2.5 and O3 were carried out with the nested-grid version of the GEOS-Chem
model, which included detailed ozone–NOx–VOC–aerosol chemistry [43], with a horizontal resolution
of 0.5◦ latitude × 0.625◦ longitude (version 11-01). The nested domain was set over Asia (60◦–150◦ E,
11◦ S–55◦ N), and the chemical boundary conditions that were updated every 3 h were provided by the
global GEOS-Chem simulation with 2◦ latitude × 2.5◦ longitude resolution. The simulation was driven
by the assimilated MERRA-2 meteorological data from the Goddard Earth Observing System (GEOS)
of the NASA Global Modeling Assimilation Office (GMAO) [44]. Over the Asian domain, MIX 2010
was taken as the baseline anthropogenic inventory [45], and the scaling factors after year 2010 followed
Zheng et al. [46]. The biomass burning emissions were taken from the Global Fire Emissions Database
(GFED4) [47]. Natural emissions, including NOx from lighting and soil and VOCs from vegetation,
were calculated on the basis of MERRA-2 meteorological parameters. The GEOS-Chem simulation
was conducted from 1 January to 31 December of the year 2016 after a 6 month model spin-up.
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3. Results

3.1. Observed PM2.5–O3 Correlations

Figure 1 shows the spatial-temporal distributions of correlations between daily PM2.5 and MDA8
O3 concentrations over China. Each panel represents each month for the year 2016. It is too intensive
to display all 1497 sites on the map, therefore, we present the correlations for all 360 cities. The PM2.5

concentrations were positively correlated with O3 concentrations for most regions and seasons over
China, while the negative correlations mainly existed in northern China during winter. The strongest
positive correlations (r > +0.7) were observed in southern China during July, and the strongest negative
correlations (r < −0.5) were observed in northern China during January, with most cities passing the
95% confidence level.
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Figure 1. Spatial-temporal distributions of correlations between observed daily PM2.5 and maximum
daily 8 h average (MDA8) O3 concentrations over China. Each panel represents each month for the
year 2016. The dots with crosses are statistically significant at the 95% level.

Interestingly, the spatial-temporal distributions of PM2.5–O3 correlations highly resembled those
of temperature (shown in Figure S1). Both the PM2.5–O3 correlations and temperature reached the
maximum in southern China during July and reached the minimum in northern China during January.
To further investigate the relations between PM2.5–O3 correlations and temperature, we provide scatter
plots of daily PM2.5 and MDA8 O3 concentrations color coded with temperature for all cities of the
whole China during 2016 in Figure 2a. Regularly, a positive correlation between PM2.5 and O3 was
found for high air temperature samples, while a negative correlation prevailed in cold environments.
The phenomenon can be presented more clearly when the data points are separated into northern cities
(shown in Figure 2b) and southern cities (shown in Figure 2c). A remarkable positive correlation was
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found for high temperature over southern China and a significant negative correlation was observed
for low temperature over northern China, which was also well reflected in Figure 1. It was noted
that the relations between PM2.5–O3 correlations and other meteorological parameters (e.g., relative
humidity) were much weaker (scatter plots for other meteorological parameters were not shown).Atmosphere 2019, 10, x FOR PEER REVIEW 5 of 16 
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Figure 2. Scatter plots of observed daily PM2.5 and MDA8 O3 concentrations color coded with
temperature for all cities of the (a) whole China, (b) northern China, and (c) southern China during the
year 2016. Northern (southern) China is defined as the area north (south) of 33◦ N.

In the following sections, we focus on comparing data points which exhibit the strongest positive
PM2.5–O3 correlations and high air temperature (i.e., southern China in July) and those that exhibit the
strongest negative PM2.5–O3 correlations and low air temperature (i.e., northern China in January), to
investigate the underlying reasons for the varying PM2.5–O3 correlations.

3.2. Model Evaluation

Previous studies have indicated that the GEOS-Chem model captures the distributions of observed
PM2.5 [13,48,49] and O3 [11,50–52] over China fairly well. We conducted comparisons with the MEE
measurements here to evaluate whether the version of the GEOS-Chem model used in this study can
reproduce the observed variations in surface-layer PM2.5 and O3 and their correlations.

The observed and simulated daily PM2.5 and MDA8 O3 concentrations for northern cities in
January and southern cities in July are shown in Figures 3 and 4, respectively. Although the model
generally underestimated (overestimated) the absolute PM2.5 (MDA8 O3) concentrations, the model
successfully captured the temporal variations of PM2.5 and MDA8 O3 concentrations. For northern
cities in January, the correlation coefficients between the simulated and observed PM2.5 (MDA8 O3)
concentrations ranged from 0.70 to 0.87 (from 0.67 to 0.89); for southern cities in July, the correlation
coefficients for PM2.5 (MDA8 O3) were in the range of 0.52 to 0.80 (0.79 to 0.92). For both observed and
simulated concentrations, PM2.5 presented an overall negative correlation with MDA8 O3 in northern
China during January but exhibited a significant positive correlation with MDA8 O3 in southern China
during July. The observed inverse correlations were reproduced by the GEOS-Chem model fairly well.
Therefore, it was feasible to conduct PM2.5–O3 correlation analysis using the GEOS-Chem model.

3.3. Underlying Reasons and Mechanisms

As mentioned in the Introduction, there exist interactions between PM2.5 and O3. However, PM2.5

and O3 may exhibit varying and even inverse correlations in different seasons and different regions,
which indicates that the importance of different interactions on the PM2.5–O3 correlations may vary
over time across space. The Beijing–Tianjin–Hebei (BTH, 37◦–41◦ N, 114◦–118◦ E) agglomeration, as
the representative of northern China, has a low temperature below 0 ◦C and the strongest negative
PM2.5–O3 correlation in January. The Pearl River Delta (PRD, 22◦–24◦ N, 112◦–115◦ E) agglomeration,
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as the representative of southern China, has a high temperature above 27 ◦C and the strongest
positive PM2.5–O3 correlation in July. Therefore, in this section, we chose the BTH in January (as
the representative of negative PM2.5–O3 correlations and low temperature) and PRD in July (as the
representative of positive PM2.5–O3 correlations and high temperature), to compare the importance
of different PM2.5–O3 interactions on the correlations for different regions and seasons (i.e., different
temperature) and reveal the underlying reasons/mechanisms, based on the GEOS-Chem simulation.Atmosphere 2019, 10, x FOR PEER REVIEW 7 of 16 
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Figure 3. Observed and simulated daily PM2.5 and MDA8 O3 concentrations for northern cities in
January. Observed (simulated) concentrations are shown in dashed (solid) lines. The PM2.5 (MDA8 O3)
concentrations are shown in black (red) lines. The correlation coefficient (r) and normalized mean bias
(NMB) between the observations and simulations are shown above each panel.
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Figure 4. Observed and simulated daily PM2.5 and MDA8 O3 concentrations for southern cities in
July. Observed (simulated) concentrations are shown in dashed (solid) lines. The PM2.5 (MDA8 O3)
concentrations are shown in black (red) lines. The correlation coefficient (r) and normalized mean bias
(NMB) between the observations and simulations are shown above each panel.

3.3.1. PM2.5 Suppressing O3 Generation by Reducing Photolysis Rates

Particulates may decrease the actinic flux of incident solar radiation by scattering or absorbing
solar radiation directly and altering the optical properties of clouds indirectly, and inhibit the
photolysis reactions near the surface by reducing the photolysis rates, which finally reduce the O3

generation [26–31].
Figure 5 shows the time-series of simulated daily PM2.5 concentrations, solar radiation at the

ground (RADSWG), photolysis rates (J(NO2) and J(O3)), and MDA8 O3 concentrations, for BTH in
January and PRD in July. It is remarkable in Figure 5a that the RADSWG was negatively correlated
with PM2.5 (r = −0.45), indicating the strong extinction effects of particulates on solar radiation. The
photolysis rates, including J(NO2) and J(O3), and MDA8 O3 concentrations presented significantly
positive correlation with RADSWG, which finally resulted in a strongly negative correlation between
PM2.5 and MDA8 O3 for BTH in January. Influenced by meteorological conditions, the PM2.5

concentrations exhibited spikes and valleys. When the PM2.5 concentrations reached the peaks,
the RADSWG, photolysis rates, and MDA8 O3 concentrations reached the lowest levels due to the
inhibitory effect of PM2.5 on O3 generation by reducing photolysis rates. By contrast, for PRD in July
(Figure 5b), the correlation between RADSWG and PM2.5 was much smaller (r = −0.27), indicating
a weaker extinction effect of particulates on solar radiation and a consequently weaker influence on
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photolysis rates and MDA8 O3 concentrations. For BTH in January, the average PM2.5 concentrations
were relatively high because of winter heating and low boundary layer height associated with low
temperature, which led to a more effective suppressing effect of PM2.5 on O3 generation by reducing
photolysis rates for cold environments. A similar phenomenon has also been reported by Tie et al. [26],
who pointed out that surface photolysis rates J(NO2) and J(O3) in Eastern China were reduced by
10–30% and 20–30% due to the effect of particulates on photolytic radiation in winter, as well as 1–10%
and 5–20% in summer, leading to reductions in surface O3 concentrations by 2–4% in winter and less
than 2% in summer. Overall, the negative PM2.5–O3 correlation for cold environment may be partly
attributed to the effective inhibitory effect of PM2.5 on O3 generation by reducing photolysis rates at
low temperature.Atmosphere 2019, 10, x FOR PEER REVIEW 9 of 16 
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Figure 5. Time-series of simulated daily PM2.5 concentrations, solar radiation at the ground (RADSWG),
photolysis rates (J(NO2) and J(O3)), and MDA8 O3 concentrations for (a) Beijing–Tianjin–Hebei (BTH)
in January and (b) Pearl River Delta (PRD) in July.

3.3.2. NO Suppressing O3 Production through the NO Titration Effect

It is known that excessive NO is not favorable for O3 generation. If NO levels are high, O3

production is suppressed by the “O3 + NO→ NO2 + O2 ” reaction, usually referred to as NO titration,
which is an important O3 removal process associated with freshly emitted NO [14,53].

The time-series of simulated daily PM2.5, BC, NO, and MDA8 O3 concentrations, for BTH in
January and PRD in July, are shown in Figure 6. The NO concentration was calculated to be 8.5 ppbv
averaged over BTH in January, six times that for PRD in July. It is conspicuous, in Figure 6a, that the
MDA8 O3 was negatively correlated with NO with a high correlation coefficient of −0.74, indicating a



Atmosphere 2019, 10, 352 9 of 15

strong NO titration effect for BTH in January. When the NO concentrations reached the spikes, the
MDA8 O3 concentrations reached the valleys due to the strong NO titration effect. By contrast, the NO
titration effect for PRD in July was weaker; the correlation coefficient between MDA8 O3 and NO was
−0.55. Ding et al. [20] and Chen et al. [25] also reported similar finding that the negative correlation
mainly existed for low temperature data, suggesting a titration effect of freshly emitted NO with O3 in
cold seasons.
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For BTH in January, the lower air temperature (generally indicating the feebler solar radiation)
resulted in weaker atmospheric oxidation ability, therefore, more NO was freshly emitted. The BC, as a
primary particulate, was difficult to generate or clear through chemical reactions. It is noted that NO and
BC, as well as PM2.5, have similar sources, such as combustion and traffic activities [20,25]. Therefore,
the freshly emitted NO presented a significant positive correlation with the primary particulate BC
(r = 0.85) and consequently with PM2.5 (r = 0.73). In contrast, for PRD in July, more NO was converted
to NO2, and therefore, NO tended to be less correlated with the primary particulate BC (r = 0.39) and
consequently with PM2.5 (r = −0.13) (Figure 6b).

In conclusion, the significant negative correlation between NO and MDA8 O3, and the remarkable
positive correlation between NO and PM2.5, led to the negative correlation between PM2.5 and MDA8
O3 for BTH in January. The negative PM2.5–O3 correlation at low temperature may be partly attributed
to the strong titration effect of high NO concentration, which is consistent with primary PM2.5 in a
cold environment.
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3.3.3. High O3 Concentration and Active Photochemical Activity Promoting Secondary
PM2.5 Formation

As reported in previous studies, high O3 concentration generally indicates strong atmospheric
photochemical reactivity, which can promote the secondary particulate formation. For example, the
photochemical oxidation of SO2 to H2SO4 may be promoted by strong atmospheric photochemical
reactions, and the formation of HNO3 can be strongly enhanced by high O3 [19,32].

To examine the effects of O3 and photochemical activity on secondary particulate formation under
different temperature conditions, we compared the time-series of simulated daily Ox and MDA8 O3

concentrations, SOR and NOR, as well as SNA and PM2.5 concentrations between BTH in January
and PRD in July in Figure 7. The total oxidant Ox (Ox = O3 + NO2) was used to characterize the
atmospheric oxidation capacity, following Wang et al. [14], Jia et al. [22], and Clapp and Jenkin [54].
The sulfur oxidation ratio, SOR = n-SO4

2−/(n-SO4
2− + n-SO2), was a measure of the conversion degree

of sulfur; the nitrogen oxidation ratio, which was defined as NOR = n-NO3
−/(n-NO3

− + n-NO2), was
used to quantitatively express the conversion degree of nitrogen [55–58]. The secondary inorganic
particulate was defined as SNA = SO4

2− + NO3
− + NH4

+.
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SOR = n-SO4

2−/(n-SO4
2− + n-SO2), NOR = n-NO3

−/(n-NO3
− + n-NO2), SNA = SO4

2− + NO3
− + NH4

+.

For PRD in July (Figure 7b), the correlation coefficient between MDA8 O3 and Ox was 0.93,
indicating the important role of O3 on the atmospheric oxidizing capacity. The SOR (NOR) exhibited
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a pronounced positive correlation with Ox, with a high correlation coefficient of 0.89 (0.93), which
indicates that the formation of secondary inorganic particulates can be promoted by photochemical
oxidation and O3. Consequently, the SNA and PM2.5 were positively correlated with Ox and MDA8
O3 concentrations. It is noted that high concentrations of O3 and strong atmospheric photochemical
reactions may also enhance the formation of secondary organic aerosol (SOA) [19]. By analyzing
concentrations of SOA and gas pollutants measured in the summer of 2013, Wang et al. [19] found that
SOA had a good correlation with Ox, with a correlation coefficient of 0.90, which indicated that SOA
formation was mainly promoted by photochemical oxidation. In contrast, the correlation between SOR
(NOR) and Ox was much smaller and even negative for BTH in January (Figure 7a). In general, high
air temperature means strong solar radiation and high O3 concentration. Therefore, the promoting
effect of high O3 concentration and active photochemical activity on secondary PM2.5 formation was
more effective under high temperature conditions.

Overall, in an environment of high temperature, high concentration of O3 indicates a strong
atmospheric photochemical reactivity, and significantly promotes the level of atmospheric oxidation.
The strong atmospheric oxidation capacity, in turn, enhances the formation of both secondary inorganic
particulates and secondary organic particulates. The enhanced formation of secondary particulates
eventually leads to significant positive PM2.5–O3 correlation in a hot environment.

4. Conclusions and Discussion

In this study, the spatial-temporal characteristics of the correlations between PM2.5 and O3

were investigated at the national-scale level, based on the pollutant concentrations measured at all
monitoring sites in China from the Ministry of Ecological and Environment for the whole year of 2016.
The underlying reasons or mechanisms on the varying PM2.5–O3 correlations in different regions and
seasons were examined by a chemical transport model (GEOS–Chem).

Measurements showed that the PM2.5 concentrations were positively correlated with O3

concentrations for most regions and seasons over China, while the negative correlations were
mainly observed in northern China during winter. The strongest positive PM2.5–O3 correlations
with correlation coefficients (r) larger than +0.7 existed in southern China during July, and the strongest
negative correlations (r < −0.5) were observed in northern China during January.

It was very interesting to see that the spatial-temporal distributions of PM2.5–O3 correlations
highly resembled those of temperature. Therefore, the relations between PM2.5–O3 correlations and
temperature were further investigated. Regularly, the positive PM2.5–O3 correlations prevailed for high
air temperature samples, while the negative correlations were generally found in a cold environment.

We then focused on comparing data points which exhibited the strongest positive PM2.5–O3

correlations and high air temperature (i.e., southern China in July) and those that exhibited the strongest
negative PM2.5–O3 correlations and low air temperature (i.e., northern China in January) to investigate
the underlying reasons for the varying PM2.5–O3 correlations for different regions and seasons (i.e.,
different temperature), based on the GEOS-Chem simulation. Model evaluations showed that it was
viable and reliable to conduct PM2.5–O3 correlation analysis using the GEOS-Chem model.

The PM2.5 may suppress O3 generation by reducing photolysis rates. For northern China in
January (i.e., low temperature condition), the average PM2.5 concentrations were relatively high, which
led to a more effective inhibitory effect of PM2.5 on O3 generation for cold environments than for hot
environments. Therefore, the negative PM2.5–O3 correlation for a cold environment may be partly
attributed to the effective inhibitory effect of PM2.5 on O3 generation by reducing photolysis rates
at low temperature. The NO may suppress O3 production through the NO titration effect, and the
inhibitory effect was found to be stronger for low temperature conditions than for high temperature
conditions. However, the freshly emitted NO presented a significant positive correlation with the
primary particulate BC, and consequently, with PM2.5 in cold seasons. Therefore, the negative PM2.5–O3

correlation at low temperature may also be partly attributed to the strong titration effect of high NO
concentration, which was consistent with primary PM2.5 in a cold environment. High concentration
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of O3 generally indicates active photochemical activity, which may promote the secondary PM2.5

formation. In general, high O3 concentration occurs in an environment of high temperature and
strong solar radiation. Therefore, the positive PM2.5–O3 correlation in a hot environment may be a
result of the promoting effect of high O3 concentration and active photochemical activity on secondary
particle formation.

In conclusion, the effective inhibitory effect of PM2.5 on O3 generation by reducing photolysis
rates at low temperature, and the strong titration effect of freshly emitted NO with O3 in cold seasons,
together contribute to the strongest negative PM2.5–O3 correlation in cold environments. The strongest
positive PM2.5–O3 correlation at high temperature, however, is mainly attributed to the promoting
effect of high O3 concentration and active photochemical activity on secondary particle formation in
hot environments.

This paper revealed three underlying reasons for the PM2.5–O3 correlations. It is noted that
heterogeneous chemical reaction is an important way for PM2.5–O3 interaction [17,59–62], which may
also be a reason for the PM2.5–O3 correlations. The formation of SOA with high O3 concentration may
contribute to positive correlations, because biogenic emission of VOCs is high under high temperature
conditions in summer [20,25]. Furthermore, the variations in meteorological variables, through affecting
transport and chemical processes of pollutants, may be important for daily variations in PM2.5 and
O3, and therefore, contribute to the PM2.5–O3 correlations. Comprehensively understanding all these
chemical and physical mechanisms needs more in-depth research through sensitivity experiments in
future studies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/10/7/352/s1,
Figure S1: Spatial-temporal distributions of surface temperature (°C). Each panel represents each month for
year 2016.
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